首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1=xex+e2x,y2=xex+e一x,y3=xex+e2x—e一x是某二阶线性非齐次微分方程的三个解,则此微分方程为________.
已知y1=xex+e2x,y2=xex+e一x,y3=xex+e2x—e一x是某二阶线性非齐次微分方程的三个解,则此微分方程为________.
admin
2016-07-29
49
问题
已知y
1
=xe
x
+e
2x
,y
2
=xe
x
+e
一x
,y
3
=xe
x
+e
2x
—e
一x
是某二阶线性非齐次微分方程的三个解,则此微分方程为________.
选项
答案
y"一y’一2y=(1—2x)e
x
.
解析
y
1
—y
2
=e
2x
一e
一x
,y
2
一y
3
=e
一x
都是相应齐次方程的解.
而(y
1
一y
2
)+(y
1
—y
3
)=e
2x
也是齐次方程的解,e
2x
与e
一x
是两个线性无关的解,而y
2
=xe
x
+e
一x
是非齐次方程的解,从而y
2
一e
一x
=xe
x
也是非齐次方程的解,由e
一x
e2
x
是齐次方程的解,可知特征根r
1
=一1,r
2
=2,特征方程为(r+1)(r一2)=0,即r
2
一r一2=0.设所求非齐次方程为y"一y’一2’,=f(x).将非齐次解xe
x
代入,得
f(x)=(xe
x
)
"
一(xe
x
)
’
一2xe
x
=(1—2x)e
x
故所求方程为y"一y’一2y=(1—2x)e
x
.
转载请注明原文地址:https://kaotiyun.com/show/rWT4777K
0
考研数学三
相关试题推荐
根据我国刑法规定,对于危害国家安全和严重破坏社会秩序的一些犯罪,可以剥夺犯罪者的政治权利,包括剥夺()。
土地革命战争时期,标志着毛泽东思想初步形成的著作有()。
证明下列曲线积分在整个xOy平面内与路径无关,并计算积分值:
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
求下列向量场A沿定向闭曲线Γ的环流量:(1)A=-yi+xj+ck(c为常数),Γ为圆周x2+y2=1,z=0,从z轴正向看去,Γ取逆时针方向;(2)A=3yi-xzj+yz2k,Γ为圆周x2+y2=4,z=1,从z轴正向看去,Γ取逆时针方向.
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
A是n阶矩阵,且A3=0,则().
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得
设随机变量X的数学期望和方差分别为E(X)=μ,D(X)=σ2,用切比雪夫不等式估计P{|X一μ|<3σ}.
随机试题
菲利普斯曲线
争名利,何年是彻。彻:
A.浸渍法B.渗漉法C.煎煮法D.回流法E.沙氏或索氏提取法
研究城市土地利用空间分布结构时,将城镇分为()。
计算机的数据输出设备主要有()、打印机、绘图仪等。
甲上市公司拟非公开发行股票,其发行方案的下列内容中,符合证券法律制度规定的是()。(2011年)
突发事件,是指突然发生,造成或者可能造成严重社会危害,需要采取应急处置措施予以应对的自然灾害、事故灾难、公共卫生事件和社会安全事件。为妥善处理突发事件,国家建立统一领导、综合协调、分类管理、分级负责、()管理为主的应急管理体制。
(2017·福建)“小明既聪明又勤奋”,该评价涉及的心理现象是()
《根特协定》
Notes:parade游行TheVillageofPouceCoupeofficewillreopenon________.
最新回复
(
0
)