首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
admin
2015-05-07
77
问题
已知α
1
,α
2
,α
3
,α
4
是3维非零向量,则下列命题中错误的是
选项
A、如果α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关
B、如果α
1
,α
2
,α
3
线性相关,α
2
,α
3
,α
4
线性相关,那么α
1
,α
2
,α
4
也线性相关
C、如果α
3
不能由α
1
,α
2
线性表出,α
4
不能由α
2
,α
3
线性表出,则α
1
可以由α
2
,α
3
,α
4
线性表出
D、如果秩r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
),则α
4
可以由α
1
,α
2
,α
3
线性表出
答案
B
解析
例如α
1
=(1,0,0)
T
,α
2
=(0,1,0)
T
,α
3
=(0,2,0)
T
,α
4
=(0,0,1)
T
,可知(B)不正确.应选(B).
关于(A):如果α
1
,α
2
,α
3
线性无关,又因α
1
,α
2
,α
3
,α
4
是4个3维向量,它们必线性相关,而
知α
4
必可由α
1
,α
2
,α
3
线性表出.
关于(C):由已知条件,有
(Ⅰ) r(α
1
,α
2
)≠r(α
1
,α
2
,α
3
), (Ⅱ) r(α
2
,α
3
)≠r(α
2
,α
3
,α
4
).
若r(α
2
,α
3
)=1,则必有r(
1
,α
2
)=r(α
1
,α
2
,α
3
),与条件(Ⅰ)矛盾.故必有r(α
2
,α
3
)=2.那
么由(Ⅱ)知r(α
2
,α
3
,α
4
)=3,从而r(α
1
,α
2
,α
3
,α
4
)=3.因此α
1
可以由α
2
,α
3
,α
4
线性表出.
关于(D):经初等变换有
(α
1
,α
1
+α
2
,α
2
+α
3
)→(α
1
,α
2
+α
3
)→(α
1
,α
2
,α
3
),
(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)→(α
4
,α
1
,α
2
,α
3
)→(α
1
,α
2
,α
3
,α
4
),
从而 r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,α
4
).
因而α
4
可以由α
1
,α
2
,α
3
线性表出.
转载请注明原文地址:https://kaotiyun.com/show/rY54777K
0
考研数学一
相关试题推荐
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3.A能否相似于对角矩阵,说明理由.
若矩阵相似,则a=________.
|A|是n阶行列式,其中有一行(列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
设函数f为[0,1]上的连续函数,且0≤f(x)<1,利用二重积分证明不等式:
计算,其中D是由曲线xy=2,直线y=x—1及y=x+1所围成的区域.
设函数f(x,y)连续,则∫12dy∫1yf(x,y)dx+∫12dy∫y4—yf(x,y)dx=().
按两种不同积分次序化二重积分为二次积分,其中D为:直线y=0,曲线y=sinx(0≤x≤π)所围闭区域;
设f(x)在x=0)处连续,且则曲线y=f(x)在点(0,f(0))处的切线方程为________。
设函数则在点x=0处f(x)().
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求B
随机试题
往数据库中添加记录的SQL命令是()
苯丙酮尿症
A.每搏输出量的多少B.每分输出量的多少C.外周阻力的大小D.大动脉弹性的高低E.循环血量的多少一般情况下,收缩压的高低主要反映
甲状腺肿显著增大时可出现压迫症状,如压迫食管可出现
开发产品的核算可按其具体内容和核算对象,分为四类核算。下列阐述正确的为()。
(2016年)甲股份有限公司(以下简称“甲公司”)为A股上市公司。2015年8月3日,乙有限责任公司(以下简称“乙公司”)向中国证监会、证券交易所提交权益变动报告书,称其自2015年7月20日开始持有甲公司股份,截至8月1日,已经通过公开市场交易持有该公司
平面设计中很讲究色彩的运用,其中颜色三要素是指()。
太阳大气层中的色球层的重要标志是()。
白磷:黄磷( )
Readthefollowingpassageandanswerquestions9-18.1.WhenChristopherColumbuslandedonAmerica’sshores,heencounteredco
最新回复
(
0
)