首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
admin
2015-05-07
62
问题
已知α
1
,α
2
,α
3
,α
4
是3维非零向量,则下列命题中错误的是
选项
A、如果α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关
B、如果α
1
,α
2
,α
3
线性相关,α
2
,α
3
,α
4
线性相关,那么α
1
,α
2
,α
4
也线性相关
C、如果α
3
不能由α
1
,α
2
线性表出,α
4
不能由α
2
,α
3
线性表出,则α
1
可以由α
2
,α
3
,α
4
线性表出
D、如果秩r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
),则α
4
可以由α
1
,α
2
,α
3
线性表出
答案
B
解析
例如α
1
=(1,0,0)
T
,α
2
=(0,1,0)
T
,α
3
=(0,2,0)
T
,α
4
=(0,0,1)
T
,可知(B)不正确.应选(B).
关于(A):如果α
1
,α
2
,α
3
线性无关,又因α
1
,α
2
,α
3
,α
4
是4个3维向量,它们必线性相关,而
知α
4
必可由α
1
,α
2
,α
3
线性表出.
关于(C):由已知条件,有
(Ⅰ) r(α
1
,α
2
)≠r(α
1
,α
2
,α
3
), (Ⅱ) r(α
2
,α
3
)≠r(α
2
,α
3
,α
4
).
若r(α
2
,α
3
)=1,则必有r(
1
,α
2
)=r(α
1
,α
2
,α
3
),与条件(Ⅰ)矛盾.故必有r(α
2
,α
3
)=2.那
么由(Ⅱ)知r(α
2
,α
3
,α
4
)=3,从而r(α
1
,α
2
,α
3
,α
4
)=3.因此α
1
可以由α
2
,α
3
,α
4
线性表出.
关于(D):经初等变换有
(α
1
,α
1
+α
2
,α
2
+α
3
)→(α
1
,α
2
+α
3
)→(α
1
,α
2
,α
3
),
(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)→(α
4
,α
1
,α
2
,α
3
)→(α
1
,α
2
,α
3
,α
4
),
从而 r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,α
4
).
因而α
4
可以由α
1
,α
2
,α
3
线性表出.
转载请注明原文地址:https://kaotiyun.com/show/rY54777K
0
考研数学一
相关试题推荐
设ξ1=[1,-2,3,2]T,ξ2=[2,0,5,-2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是().
设3阶实对称矩阵A的各行元素之和均为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T是方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设A为3阶实对称矩阵,其特征值为λ1=0,λ2=λ3=1,α2,α3是A的两个不同的特征向量,且A(α1+α2)=α2.求线性方程组Ax=α2的通解.
已知A,B为3阶相似矩阵,λ1=1,λ2=2为A的两个特征值,|B|=2,则行列式
设二次型f(x1,x2,x3)=x12-x22+2ax1x3+4x2x3的负惯性指数为1,求常数a的取值范围.
|A|是n阶行列式,其中有一行(列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
设区域D是由曲线y=x2与x=y2在第一象限内围成的图形,y=x将D分成D1与D2,如图1-14-1所示,f(x,y)为连续函数,则().
设z=z(x,y)是由方程x2y—z=ψ(z+y+z)所确定的函数,其中ψ可导,且ψ’≠一1,则=_______.
设平面薄片所占的区域D由抛物线y=x2及直线y=x所围成,它在(x,y)处的面密度ρ(x,y)=x2y,求此薄片的重心.
随机试题
中速滤纸的标志色带为红色。
护士在为胸腔积气患者体查时,其叩诊音是
提出经典的条件反射学说的学者为
等响度曲线反映了入耳对哪种声音感受不太敏感?(2008,4)
链球有哪几个部分组成?()
甲将发生故障的电视机放在乙处修理,因为钱不够,遂将自己的手机放在乙处,说好第二天来取。乙取得对甲手机的占有是基于()。
家庭美德的基本内容包括()。
简述口腔健康状况调查的目的。
(2016年真题)2015年5月7日,A公司法定代表人甲吩咐员工乙将一台已损坏的旧电脑扔掉。乙将电脑扔到垃圾箱后,觉得与其扔了还不如修好后卖掉,遂返回将电脑带回家修好。乙的朋友丙得知上述情况后,在2015年6月5日找到乙,请求乙将电脑送给自己,乙答应,并与
下列关于网络接入技术和方法的描述中,错误的是
最新回复
(
0
)