首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:矩阵相似且合同.
证明:矩阵相似且合同.
admin
2021-07-27
85
问题
证明:矩阵
相似且合同.
选项
答案
由[*]解得A的特征值为λ=0(二重)和λ=3.类似地,由[*]解得B的特征值为λ=0(二重)和λ=3,知两矩阵有相同特征值.因为A,B同为实对称矩阵,又有相同的特征值,因此,它们均相似于由特征值0,0,3构造的同一个对角矩阵A.即存在正交矩阵(也即可逆矩阵)Q
1
,Q
2
,使得Q
1
-1
AQ
1
=Q
2
-1
BQ
2
=A,由于Q
1
,Q
2
为正交矩阵,因此Q
2
Q
1
-1
仍为正交矩阵,记为P=Q
1
Q
1
-1
,则有A=P
-1
BP,即证矩阵A和B相似,又因P=Q
2
Q
1
-1
为正交矩阵,满足P
-1
=P
T
,所以同时有等式A=P
T
BP,即证A和B合同.
解析
转载请注明原文地址:https://kaotiyun.com/show/vGy4777K
0
考研数学二
相关试题推荐
设A为3阶非零矩阵,且满足aij=Aij(i,j=1,2,3),其中Aij为aij的代数余子式,则下列结论:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.其中正确的个数为()
下列条件不能保证n阶实对称阵A正定的是()
微分方程y"一y=ex+1的特解应具有形式(其中a,b为常数)()
设证明:A=E+B可逆,并求A-1.
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
二次型f(x1,x2,x3)=x12+5x22+x32一4x1x2+2x2x3的标准形可以是()
实二次型f(x1,x2,…,xn)的秩为r,符号差为s,且f的矩阵和一f的矩阵合同,则必有()
设矩阵.已知矩阵A相似于B,则r(A-2E)与r(A-E)之和等于
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为,设,求AΒ.
四阶行列式的值等于()
随机试题
建设工程竣工验收应当具备下列条件:()
资本公积经批准后可用于派发现金股利。()
金华市境内分为哪几大水系?()
下列表述不正确的一项是()。
犯罪主体只能是自然人。()
不随便承诺,不做违反政策的事,是接待来访的()的基本要求。
有一块直角梯形形状的草地,上底与下底的长度之比为3:4。现在要扩充其面积,将上底增加了15米,下底变成以前的2倍,正好变成一个正方形。问:原来草地的面积是多少平方米?
Everyhumanbeingisfallible;wemakemistakes.InAmericawhenamistakehasbeenmade,itisconsideredfittingfortheperso
TheapartmentisfurnishedwithallthefollowingEXCEPT
KeepOurSeasCleanA)Bytheyear2050itisestimatedthattheworld’spopulationcouldhaveincreasedtoaround12billio
最新回复
(
0
)