首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
admin
2017-10-19
44
问题
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
选项
答案
考察带拉格朗日余项的一阶泰勒公式:[*]有 f(x)=f(c)+f’(c)(x-c)+[*]f"(ξ)(x-c)
2
, (*) 其中ξ=c+θ(x一c),0<θ<1. 在(*)式中,令x=0,得 f(0)=f(c)+f’(c)(一c)+[*]f"(ξ)c
2
,0<ξ
1
<c<1; 在(*)式中,令x=1,得 f(1)=f(c)+f’(c)(1一c)+[*]f"(ξ
2
)(1一c)
2
,0<c<ξ
2
<1. 上面两式相减得 f(1)一f(0)=f’(c)+[*][f"(ξ2)(1一c)
2
一f"(ξ
1
)c
2
]. 从而f’(c)=f(1)一f(0)+[*][f"(ξ
1
)c
2
一f"(ξ
2
)(1一c)
2
],两端取绝对值并放大即得 [*] 其中利用了对任何c∈(0,1)有(1一c)
2
≤1—c,c
2
≤c,于是(1一c)
2
+c
2
≤1.
解析
转载请注明原文地址:https://kaotiyun.com/show/s4H4777K
0
考研数学三
相关试题推荐
设b为常数.(I)求曲线L:的斜渐近线l的方程;(Ⅱ)设L与l从x=1延伸到x→+∞之间的图形的面积A为有限值.求b及A的值.
设函数,则f(10)(1)=___________.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4)是齐次方程组A*x=0的基础解系.
设f(x)∈c[1,+∞),广义积分∫1+∞f(x)dx收敛,且满足f(x)=,则f(x)=__________.
设总体X的密度函数为,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aβ1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且,证明(1)中的
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
求微分方程y"+4y’+4y=eax的通解.
随机试题
简述出版物经销及其操作程序。
国际金融市场主要包括()
阅读下文,回答问题。
患者,男,l7岁。诉牙齿出血,咀嚼无力1个月余,口腔检查:切牙和第一磨牙松动I度,切牙唇侧移位。牙周袋5~6mm,第一磨牙牙周袋6mm,菌斑指数和牙龈指数1,探诊牙龈出血。初步诊断为
患者,女性,58岁,有糖尿病史9年,身高160cm,体重45kg,护理体检:下肢水肿,查血糖12mmol/L,尿糖(+),尿蛋白(+),血尿素氮和肌酐正常。护士为患者设立的食谱中,每日糖类摄入量约为
对于监察机关移送审查起诉并且已经采取留置措施的案件,检察机关以下做法正确的是?()
水箱的有效容积,不应考虑的因素有()。
行政纠纷:指国家行政机关之间或国家行政机关同企事业单位、社会团体以及公民之间由于行政管理而引起的纠纷,包括行政争议和行政案件两种形式。下列选项中,不属于行政纠纷的是()。
解放战争时期和新中国成立后,毛泽东思想的继承和发展主要体现在
打开考生文件夹下的Word文档WORD1.doc,其内容如下:[WORD1.doc文档开始]Information技术发展的主旋律由此,还可以实现远程教育和远程医疗服务。(1)高速度。主要是指建立高速度的Informati
最新回复
(
0
)