首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
admin
2017-10-19
67
问题
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
选项
答案
考察带拉格朗日余项的一阶泰勒公式:[*]有 f(x)=f(c)+f’(c)(x-c)+[*]f"(ξ)(x-c)
2
, (*) 其中ξ=c+θ(x一c),0<θ<1. 在(*)式中,令x=0,得 f(0)=f(c)+f’(c)(一c)+[*]f"(ξ)c
2
,0<ξ
1
<c<1; 在(*)式中,令x=1,得 f(1)=f(c)+f’(c)(1一c)+[*]f"(ξ
2
)(1一c)
2
,0<c<ξ
2
<1. 上面两式相减得 f(1)一f(0)=f’(c)+[*][f"(ξ2)(1一c)
2
一f"(ξ
1
)c
2
]. 从而f’(c)=f(1)一f(0)+[*][f"(ξ
1
)c
2
一f"(ξ
2
)(1一c)
2
],两端取绝对值并放大即得 [*] 其中利用了对任何c∈(0,1)有(1一c)
2
≤1—c,c
2
≤c,于是(1一c)
2
+c
2
≤1.
解析
转载请注明原文地址:https://kaotiyun.com/show/s4H4777K
0
考研数学三
相关试题推荐
设b为常数.(I)求曲线L:的斜渐近线l的方程;(Ⅱ)设L与l从x=1延伸到x→+∞之间的图形的面积A为有限值.求b及A的值.
设z=f[cos(x2+y2)一1,In(1+x2+y2)],其中f有连续的一阶偏导数,则=
设函数f(x)可导,且f(0)=0,f’(0)=1,F(x)=,则=_____________.
设总体X的密度函数为,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.
n维列向量组α1,…,αn—1线性无关,且与非零向量β正交.证明:α1,…,αn—1,β线性无关.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
设A是3×4矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设A为n阶矩阵,且|A|=0,Aki≠0,则AX=0的通解为________。
随机试题
世の中、タダほど高いものはない、と言う。テレビのバラエティー番組には社会的使命みたいなものがない(面白ければそれでいい)から、スポンサーが番組に口を出してもだれも文句を言わない。それで番組がもっと面白くなれば、視聴者だって喜ぶだろう。しかし新聞に
关于乳腺的描述,错误的是
男,12岁。10天前出现上唇部红肿,可见脓头,自行挤压排脓液,后出现发热,畏寒,体温最高达38.9℃,寒战,头痛剧烈,神志不清。其最可能的并发症是()
患者,女,50岁。右肩疼痛并活动障碍1周,诊为右肩周炎,既往有胃溃疡病史,经常感上腹部不适。该患者可以使用药物的是
以下各项不属于自动稳定的财政政策的表现的是()。
甲股份有限公司委托A证券公司发行普通股1000万股,每股面值1元,每股发行价格为4元。根据约定,股票发行成功后,甲股份有限公司应按发行收入的2%向A证券公司支付发行费。如果不考虑其他因素,股票发行成功后,甲股份有限公司记入“资本公积”科目的金额为(
社区工作者一般会通过组织一系列社区活动,如夏季文艺演出、老人书画比赛、青少年兴趣小组等,让居民在这些活动中相互熟悉、交往、沟通,这种行为属于社区工作地区发展模式中的()策略。
拥有健康的身体是从事任何学习和工作的基本前提,确保他们的身体健康尤为重要。因此,能够促进小学生身体健康的学校体育属于基础性课程。
已知A=,矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,则X=________
TessoftheD’UrbervillesandJudetheObscurearetworepresentativenovelswrittenby__________.
最新回复
(
0
)