首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内二次可导,且f(x)在[0,1]上的最大值M=2,最小值m=0,求证:若f(x)的最大值点或最小值点至少有一个是区间(0,1)内的点,则在(0,1)内必存在两点ξ与η,使得|f’(ξ)|>2,|f"(η)|>4成
设f(x)在[0,1]上连续,在(0,1)内二次可导,且f(x)在[0,1]上的最大值M=2,最小值m=0,求证:若f(x)的最大值点或最小值点至少有一个是区间(0,1)内的点,则在(0,1)内必存在两点ξ与η,使得|f’(ξ)|>2,|f"(η)|>4成
admin
2015-04-30
48
问题
设f(x)在[0,1]上连续,在(0,1)内二次可导,且f(x)在[0,1]上的最大值M=2,最小值m=0,求证:若f(x)的最大值点或最小值点至少有一个是区间(0,1)内的点,则在(0,1)内必存在两点ξ与η,使得|f’(ξ)|>2,|f"(η)|>4成立.
选项
答案
由题设知,存在x
1
,x
2
∈[0,1],使得f(x
1
)=M=2,f(x
2
)=m=0. 由拉格朗日中值定理知,在x
1
与x
2
之间存在一点ξ,使得 [*] 因f(x
1
)一f(x
2
)=2—0=2,又|x
2
一x
1
|<1,故 [*] 为了确定起见,我们可设f(x)在[0,1]上的最大值M在(0,1)内的点x
1
处取得,而f(x)在[0,1]上的最小值m在[0,1]上的某点x
2
≠x
1
取得.因x
1
∈(0,1),又f(x
1
)=[*]=2,故 f’(x
1
)=0. 将f(x
2
)在x=x
1
展开成一阶泰勒公式,得 f(x
2
)=f(x
1
)+f’(x
1
)(x
2
一x
1
)+[*]f"(η)(x
2
一x
1
)
2
,其中η在x
1
与x
2
之间,故η∈(0,1).将函数值f(x
2
)=0,f(x
1
)=2,f’(x
1
)=0代入上式 [*] 若m=f(x
2
)且x
2
∈(0,1),可类似证明.
解析
转载请注明原文地址:https://kaotiyun.com/show/s5bD777K
0
考研数学二
相关试题推荐
华东六省一市平均每个公园面积超过20公顷的有几个省市?()
2005年华东六省一市,人均公共绿地面积超过全国平均值的有几个省市?()
民族区域自治制度与特别行政区制度是我国宪法制度中具有自身特色的两项制度。下列对这两项制度的表达不正确的是()。
2011年江苏省各级卫生部门在省委、省政府的领导下,紧紧围绕富民强省、“两个率先”目标,全面落实科学发展观,重点加强基层、基础工作,大力发展农村卫生、公共卫生、社区卫生,全面推进中医药、卫生监督和科技人才建设和卫生行风建设,各项工作都取得稳步发展。现将20
设三阶矩阵A的特征值为λ1=-1,λ2=2,λ3=4,对应的特征向量为ξ1,ξ2,ξ3,令P=(-3ξ2,2ξ1,5ξ3),则P-1(A*+2E)P等于().
设函数f(x)在[—1,1]上连续,在点x=0处可导,且f’(0)≠0.(Ⅰ)求证:给定的x∈(0,1),至少存在一个θ∈(0,1)使得∫0xf(t)dt+∫0—xf(t)dt=x[f(θx)—f(—θx)];(Ⅱ)求极限.
微分方程xy’=y(1+ln)—lnx)的通解是_______.
设z=z(χ,y)是由χ2-6χy+10y2-2yz-z2+18=0确定的函数,求z=z(χ,y)的极值点和极值.
设曲线y=y(χ)由参数方程χ=tlnt,y=给出,求(Ⅰ)y=y(χ)的单调区间和极值、凹凸区间和拐点;(Ⅱ)求曲线y=y(χ),直线χ=-,χ=e及χ轴所围成平面区域的面积.
已知当x→0时,f(x)=arcsinx—arctanax与g(x)=bx[x—ln(1+x)]是等价无穷小,则()
随机试题
沉井下沉施工时,挖土应分层、均匀、对称进行;对于有底梁或支撑梁沉井,其相邻格仓高差不宜超过()m。
偏头痛的等位发作的表现哪个不符合
下列关于企业所得税应纳税所得额准予扣除的相关费用的说法错误的是:()
对混凝土桥梁进行电阻率检测时,要求被检测构件的测区数量不宜少于()。
招标人在()和招标文件规定的开标地点组织公开开标。
围堰按材料分为木笼围堰和()等。
个人抵押授信贷款的贷款对象需满足的条件包括()。
根据《刑法》规定,盗窃信用卡并使用的,构成()
药厂使用电动研磨器将一批晒干的中药磨成药粉。厂长决定从上午10点开始,增加若干台手工研磨器进行辅助作业。他估算如果增加2台,可在晚上8点完成,如果增加8台,可在下午6点完成。问如果希望在下午3点完成,需要增加多少台手T研磨器?()
The______oftheinterstate’spropertyhasbeenagreeduponbytheheirs.
最新回复
(
0
)