首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+),)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+),)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
admin
2017-01-21
61
问题
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+),)=f(x)e
y
+f(y)e
x
,又设f’(0)存在且等于a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
选项
答案
将x=y=0代入f(x+y)=f(x)e
y
+f(y)e
x
,得f(0)=0,为证明f’(x)存在,则由导数的定义 [*] =f(x)+f’(0)e
x
=f(x)+ae
x
。 所以对任意x,f’(x)都存在,且f’(x)=f(x)+ae
x
。 解此一阶线性微分方程,得 f(x)=e
fdx
ae
x
e
—∫dx
+C]=e
x
(ax+C), 又因f(0)=0,得C=0,所以f(x)=axe
x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/s9H4777K
0
考研数学三
相关试题推荐
求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示:α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10);
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤22;
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是p1=18-2Q1,p2=12-Q2,其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位:吨
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
设A为n阶实对称矩阵,秩﹙A﹚=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)的
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据列维.林德伯格(Levy-Lindherg)中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn
随机试题
在医疗机构不同环境下工作的医务人员,手卫生应达到的要求是什么?
医学道德的尊重原则不包括
李某,男,48岁。咳嗽,咳血,潮热颧红,自汗盗汗,面白神疲,气短声怯,倦怠无力,食欲不振,舌质光红,苔薄,脉细数无力,宜诊断为
测定债券发行人偿还债务本金和利息的可靠性主要依靠()
行政体系可以有自己的一套等级价值谱系,但学术研究必须有自己独立的价值评估谱系。学术经费的行政控制导致学术评估体系也往行政等级体系上靠,迫使学术价值谱系与行政等级体系相重合,使学不像学。学术行政化的现状应当引起有关部门的高度重视,并采取有效措施进行改变。这段
法国负责交通事务的国务秘书表示,法国将同欧盟一起推动全球的航空安全,以确保每位乘客的出行安全。比瑟罗说,由于世界上所有国家都希望保持在航空领域的自主权,因此国际民航机构无法迫使某个国家进行改变。他认为,这种情况是“不可接受的”。他希望法国能与欧盟共同努力,
企业社会响应是指企业受社会伦理道德标准的引导满足社会某种普遍需要。根据上述定义,下列选项不属于企业社会响应的是()。
证明:当x>0时,arctanx+。
KarlVonLinne(orLinnaeus,asheiswidelyknown)wasaSwedishbiologistwhodevisedthesystemofLatinisedscientificnames
It’snogood______remembergrammaticalrules.Youneedtopractisewhatyouhavelearned.
最新回复
(
0
)