首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条直线的方程为 l1=aχ+2by+3c=0, l2=bχ+2cy+3a=0, l3=cχ+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条直线的方程为 l1=aχ+2by+3c=0, l2=bχ+2cy+3a=0, l3=cχ+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2016-10-21
78
问题
已知平面上三条直线的方程为
l
1
=aχ+2by+3c=0,
l
2
=bχ+2cy+3a=0,
l
3
=cχ+2ay+3b=0.
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
l
1
,l
2
,l
3
交于一点即方程组[*]有唯一解,即系数矩阵的秩=增广矩阵的秩=2. 记[*] 则方程组系数矩阵的秩=r(A),增广矩阵的秩=r(B),于是l
1
,l
2
,l
3
交于一点,则r(A)=r(B)=2. 必要性 由于r(B)=2,则|B|=0.计算出 |B|=-(a+b+c)(a
2
+b
2
+c
2
-ab-ac-bc) =-[*](a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
]. a,b,c不会都相等(否则r(A)=1),即(a-b)
2
+(b-c)
2
+(c-a)
2
≠0.得a+b+c=0. 充分性 当a+b+c=0时,|B|=0,于是r(A)≤r(B)≤2.只用再证r(A)=2,就可得到 r(A)=r(B)=2. 用反证法.若r(A)<2,则A的两个列向量线性相关.不妨设第2列是第1列的λ倍,则b=λa,c=λb,a=λc.于是λ
3
a=a,λ
3
b=b,λ
3
c=c,由于a,b,c不能都为0,得λ
3
=1,即λ=1,于是a=b=c.再由a+b+c=0,得a=b=c=0,这与直线方程中未知数的系数不全为0矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/sJt4777K
0
考研数学二
相关试题推荐
设函数f(x)连续,且f’(0)>0,则存在δ>0使得().
当x→0+时,下列无穷小中,阶数最高的是().
设z=z(x,y)是由方程x2+y2-z=ψ(x+y+z)所确定的函数,其中ψ具有2阶导数且ψ’≠-1.记
设函数,其中f是可微函数,则=________。
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.证明在[-a,a]上至少存在一点η,使得a3f"(η)=3∫-aaf(x)dx。
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.写出f(x)的带拉格朗日余项的一阶麦克劳林公式。
设z=f(x,y)是由方程z-y-x+xex-y-x=0所确定的二元函数,求dz。
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’+(a)>0.证明:存在ξ∈(a,b),使得f"(ξ)<0.
设y1,y2是二阶常系数线性齐次方程y"+p(x)y’+q(x)y=0的两个特解,则由y1(x)与y2(x)能构成该方程的通解,其充分条件是________。
已知函数f(x,y)在点(0,0)某邻域内连续,且,则
随机试题
一平面简谐波表达式为y=-0.5sinπ(t-2x)(SI),则该波的频率v(Hz),波速u(m/s)及波线上各点振动的振幅A(m)依次为()。
可供选择的锚杆类型有()和摩擦型锚杆。
政府质量监督机构对建设工程质量监督的职能包括()。
根据所给资料,回答下列问题。2016年全国供用水总量为6040.2亿立方米,较上年减少63.0亿立方米。其中,地表水源供水量4912.4亿立方米,占供水总量的81.3%;地下水源供水量1057.0亿立方米,占供水总量的17.5%;其他水源供水量7
腮腺造影显示导管呈腊肠样改变主要是()。
设随机变量X,Y独立,且X~E(),Y的概率密度为f(y)=则D(XY)=.
AnonymityisnotsomethingwhichwasinventedwiththeInternet.Anonymityandpseudonymityhasoccurredthroughouthistory.For
项目管理器中的"文档"选项卡用于显示和管理( )。
SarahDavislivesinDalton,Australia,andherparentsownasheepfarmthere.Daltonisasmallcountrytownwithonehundred
7SecretTestsofAttractionA)You’reasmart,attractiveperson.Soyouwouldn’tbesurprisedifoneofyourfriendsgottheh
最新回复
(
0
)