首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条直线的方程为 l1=aχ+2by+3c=0, l2=bχ+2cy+3a=0, l3=cχ+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条直线的方程为 l1=aχ+2by+3c=0, l2=bχ+2cy+3a=0, l3=cχ+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2016-10-21
34
问题
已知平面上三条直线的方程为
l
1
=aχ+2by+3c=0,
l
2
=bχ+2cy+3a=0,
l
3
=cχ+2ay+3b=0.
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
l
1
,l
2
,l
3
交于一点即方程组[*]有唯一解,即系数矩阵的秩=增广矩阵的秩=2. 记[*] 则方程组系数矩阵的秩=r(A),增广矩阵的秩=r(B),于是l
1
,l
2
,l
3
交于一点,则r(A)=r(B)=2. 必要性 由于r(B)=2,则|B|=0.计算出 |B|=-(a+b+c)(a
2
+b
2
+c
2
-ab-ac-bc) =-[*](a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
]. a,b,c不会都相等(否则r(A)=1),即(a-b)
2
+(b-c)
2
+(c-a)
2
≠0.得a+b+c=0. 充分性 当a+b+c=0时,|B|=0,于是r(A)≤r(B)≤2.只用再证r(A)=2,就可得到 r(A)=r(B)=2. 用反证法.若r(A)<2,则A的两个列向量线性相关.不妨设第2列是第1列的λ倍,则b=λa,c=λb,a=λc.于是λ
3
a=a,λ
3
b=b,λ
3
c=c,由于a,b,c不能都为0,得λ
3
=1,即λ=1,于是a=b=c.再由a+b+c=0,得a=b=c=0,这与直线方程中未知数的系数不全为0矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/sJt4777K
0
考研数学二
相关试题推荐
e1/2
[*]
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.证明在[-a,a]上至少存在一点η,使得a3f"(η)=3∫-aaf(x)dx。
设函数f(x)闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0,若极限存在,证明:在(a,b)内存在点ξ,使得.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小。
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
求下列微分方程的通解。y’-xy’=a(y2+y’)
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设f(x)=ex+sinx-1,则当x→0时().
(1992年)已知f〞(χ)<0,f(0)=0,试证:对任意的两正数χ1和χ2,恒有f(χ1+χ2)<f(χ1)+f(χ2)成立.
随机试题
生活中几乎人人都懂得不能削足适履这个道理,然而,为了职业改变性格的人却__________。职业这双鞋,难道就真的需要用改变性格的巨大代价来适应吗?这是典型的__________。填入画横线部分最恰当的一项是:
设(t,t2+1)为曲线段y=χ2+1上的点.(1)试求出由该曲线段与曲线在此点处的切线,以及χ=0,χ=α所同成图形的而积A(t);(2)当t取何值时,A(f)最小?
从信息论的观点看,神经纤维所传导的信号是
糖酵解的关键酶是
治疗湿浊蒙闭清窍神昏,常以石菖蒲与何药配伍
下列除哪项外均为大黄的主治病证( )。
扶助病人翻身侧卧,下述正确的是()。
下列双代号网络计划时间参数计算式,正确的有( )。
下列关于可转换公司债券的说法中,正确的是()。
America’sFederalReservecutinterestratesbyanotherquarter-point,to3.75%.WallStreet,whichhadbeen【51】forasixthhal
最新回复
(
0
)