首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值;
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值;
admin
2016-10-24
40
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
求矩阵A的特征值;
选项
答案
因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0, 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2; 又由A(α
1
一α
2
)=一(α
1
一α
2
),A(α
2
一α
3
)=一(α
2
一α
3
),得A的另一个特征值为λ
2
=一1.因为α
1
,α
2
,α
3
线性无关,所以α
1
一α
2
与α
2
一α
3
也线性无关,所以λ
2
=一1为矩阵A的二重特征值,即A的特征值为2,一1,一1.
解析
转载请注明原文地址:https://kaotiyun.com/show/sdT4777K
0
考研数学三
相关试题推荐
[*]
二次型f(x1,x2,x3)=x12+x22+x32-4x2x3的正惯性指数为().
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).(1)写出所有可能结果构成的样本空间Ω;(2)事件A表示恰好出现两次正面,写出A中所包含的所有可能结果;
证明:双曲线xy=a2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a2.
设函数f(x),g(x)具有二阶导数,且g"(x)
假设随机变量U在区间[-2,2]上服从均匀分布,随机变量试求:(I)X和Y的联合概率分布;(Ⅱ)D(X+Y).
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为().
设两个随机变量X与Y独立同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是().
一台设备由三大部分构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30,假设各部件的状态相互独立,以X表示同时需要调整的部件数.试求X的概率分布、数学期望E(X)和方差D(X).
随机试题
东方公司为增值税一般纳税人,适用增值税税率17%。该公司生产经营A产品,A产品的单位售价为500元(不含税),单位成本为350元。2009年3月份该公司发生的交易或事项有:(1)向本市某商场销售A产品60台,价税款收妥存入银行。(2)按合同规定销售给外
A.氨苄西林 B.青霉素类 C.乙胺丁醇 D.利福平 E.异烟肼对细菌及结核杆菌感染都有效的药物是
影响土地位置优劣的因素主要有()。
【真题(初、中级)】下列关于审计质量管理的表述中,正确的有()。
A注册会计师负责审计甲公司2017年度财务报表。A注册会计师发现甲公司2017年12月31日应收账款由1000个项目组成,应收账款账面价值为300万元,假定注册会计师确定的实际执行的重要性水平是5万元,评估的重大错报风险为“高”水平,其他实质性程序未能发现
一个使用CSMA/CA的网络上,计算机A的帧际间隔是2时槽,计算机B的帧际间隔是6时槽,如果计算机C使用()帧际间隔可以获得最高优先级。
某品牌运动鞋年末降价促销,原来可买2双鞋的钱,现在可买5双.则这一品牌鞋的价格下降的百分比是多少?
无类别域问路由(CIDR)技术有效地解决了路由缩放问题。使用CIDR技术把4个网络C1:192.24.0.0/21C2:192.24.16.0/20C3:192.24.8.0/22C4:192.24.34.0/23汇
A、可能是小王B、不知道是谁C、只有小李D、有很多人C
Dohertygotthesecretrecipesforjamfromhis
最新回复
(
0
)