设f(x)为连续函数,证明∫0ax3f(x2)dx=∫0a2fx(x)dx (a>0).

admin2018-09-05  34

问题 设f(x)为连续函数,证明∫0ax3f(x2)dx=0a2fx(x)dx   (a>0).

选项

答案0ax3f(x2)dx=[*]∫0ax2f(x2)dx2 [*]∫0a2tf(t)dt=[*]∫0a2xf(x)dx.

解析
转载请注明原文地址:https://kaotiyun.com/show/segR777K
0

最新回复(0)