首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶方阵,秩(A)=r<n,且满足A2=2A,证明:A必相似于对角矩阵。
设A为n阶方阵,秩(A)=r<n,且满足A2=2A,证明:A必相似于对角矩阵。
admin
2017-10-19
100
问题
设A为n阶方阵,秩(A)=r<n,且满足A
2
=2A,证明:A必相似于对角矩阵。
选项
答案
由秩(A)=r<n,知方程组Ax一0的基础解系含n一r个向量:ξ
1
,ξ
2
,…,ξ
n-r
。因此,ξ
1
,ξ
2
,…,ξ
n-r
,就是A的对应于特征值0的n一r个线性无关的特征向量。设A按列分块为A=[α
1
α
2
…α
n
],则题设条件AA=2A就是[Aα
1
Aα
2
…Aα
n
]=[2α
1
2α
2
…2α
n
],由Aα
j
=2α
j
,知A的列向量组的极大无关组α
j1
,α
j2
,…,α
jr
,就是A的对应于特征值2的r个线性无关特征向量。再由特征值的性质,知ξ
1
,…,ξ
n-r
,α
j1
,α
j2
,…,α
jr
,就是n阶方阵A的n个线性无关特征向量,所以,A必相似于对角矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/spH4777K
0
考研数学三
相关试题推荐
设=__________
=__________
n维列向量组α1,…,αn—1线性无关,且与非零向量β正交.证明:α1,…,αn—1,β线性无关.
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得∈f’(ξ)一f(ξ)=f(2)一2f(1).
设C1,C2是任意两条过原点的曲线,曲线C介于C1和C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=,求曲线C2的方程.
求曲线y=的上凸区间.
一半球形雪堆融化速度与半球的表面积成正比,比例系数k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的,求全部融化需要的时间.
设X和Y分别表示扔n次硬币出现正面和反面的次数,则X,Y的相关系数为().
求函数y=excosx的极值.
设在区间(-∞,+∞)内f(x)>0,且当k为大于0的常数时有f(x+k)=,则在区间(-∞,+∞)内函数f(x)是()
随机试题
在西方,“官方的参与者”有()
工作评价方法中,套级法的优点是【】
关于实验室间比对作用以下不正确的是()。
本排水管道工程担负一个小区排水任务。其设计流量为12.55m3/s,沉井平面尺寸为22m×23m的矩形,沉井埋深14m,泵站进水管为渐扩管现浇箱涵结构,断面尺寸2.4m×(2.6m~2.4m),埋深9m;出水箱涵为现浇箱涵结构,断面尺寸2.0m×4.6m×
(2016年简答题)甲股份有限公司(下称甲公司)于2014年3月上市,董事会成员为7人。2015年甲公司召开了3次董事会,分别讨论的事项如下:(1)讨论通过了为其子公司一次性提供融资担保4000万元的决议,此时甲公司总资产为1亿元;(2)拟提请股东大会
A、 B、 C、 D、 A图形的开口方向依次是朝左、朝上、朝右、朝下,呈顺时针方向旋转,下一个图形的开口方向应朝左,选项中只有图形A符合。
利兹鱼生活在距今约1.65亿年前的侏罗纪中期,是恐龙时代一种体型巨大的鱼类。利兹鱼在出生后20年内可长到9米长,平均寿命40年左右的利兹鱼,最大的体长甚至可达到16.5米。这个体型与现代最大的鱼类鲸鲨相当,而鲸鲨的平均寿命约为70年,因此利兹鱼的生长速度很
什么叫色觉的对立过程理论?它和传统的色觉理论有什么联系和区别?
有如下程序#includemain(){inti,k;intarray[4][2]={{1,2},{4,9},{6}};for(i=0;i
A、BringhisIDcardtobuytheticket.B、GotoLosAngelesbytrain.C、Getaticketfromotherairlines.D、Buytheticketatthe
最新回复
(
0
)