首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x0的邻域内四阶可导,且|f(x)(4)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有|f’’(x0)-(x-x0)2,其中x’为x关于x0的对称点.
设f(x)在x0的邻域内四阶可导,且|f(x)(4)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有|f’’(x0)-(x-x0)2,其中x’为x关于x0的对称点.
admin
2018-05-22
43
问题
设f(x)在x
0
的邻域内四阶可导,且|f(x)
(4)
|≤M(M>0).证明:对此邻域内任一异于x
0
的点x,有|f’’(x
0
)-
(x-x
0
)
2
,其中x’为x关于x
0
的对称点.
选项
答案
由f(x)f(x
0
)+f’(x
0
)(x-x
0
)+[*](x-x
0
)
2
+[*](x-x
0
)
3
+[*](x-x
0
)
4
, f(x’)=f(x
0
)+f’(x
0
)(x-x
0
)+[*](x’-x
0
)
2
+[*](x’-x
0
)
3
+[*](x’-x
0
)
4
, 两式相加得 f(x)+f(x’)-2f(x
0
)=f’’(x
0
)(x-x
0
)
2
+[*][f
(4)
(ξ
1
)+f
(4)
(ξ
2
)](x-x
0
)
4
, 于是 |f’’(x
0
)-[*][f
(4)
(ξ
1
)|+|f
(4)
(ξ
2
)|](x-x
0
)
2
, 再由|f
(4)
(x)|≤M,得 |f’’(x
0
)-[*](x-x
0
)
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/sqk4777K
0
考研数学二
相关试题推荐
(2005年试题,二)设F(x)是连续函数f(x)的一个原函数,“”表示“M的充分必要条件是N”,则必有()。
微分方程yy’+y’2=0满足初始条件的特解是________.
求函数在区间(0,2π)内的间断点,并判断其类型.
(1)证明:对任意正整数n,都有成立.(2)设(n=1,2,…),证明数列{an}收敛.
已知3阶矩阵A的第一行是(abc),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x)的表达式
已知曲线(a>0)与曲线在点(x0,y0)处有公共切线,求:(1)常数a及切点(x0,y0);(2)两曲线与x轴所围成平面图形绕x轴旋转一周所得旋转体体积Vx.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(2)利用(1)的结论计算定积分|sinx|arct
下列矩阵中不能相似对角化的是
下列说法正确的是().
随机试题
苏武归汉后见到的是
女性,30岁。2年前始有发作性心慌,心悸,偶有晕厥,每年发作1~3次不等,发作时脉搏约200次/分,未经心电图证实。为明确诊断,最佳选择的检查手段为
经肺部吸收的为( )。有溶液型、乳剂型、混悬型的为( )。
甲围攻打假车队,抢走并砸坏摄像机,抢回制假机器和假烟的行为构成:
对含有少量碎石的黏性土,欲求其天然密度宜采用()。
下列建筑不属于一类建筑的有()。
夫妻财产约定的内容包括夫妻财产约定的生效、变更或撤销约定的程序问题等,其所使用的法律是( )。
某企业为增值税一般纳税人,2000年5月发生以下业务:(1)从农业生产者手中收购玉米40吨,每吨收购价3000元,共计支付收购价款120000元。企业将收购的玉米从收购地直接运往异地的某酒厂生产加工药酒,酒厂在加工过程中代垫辅助材料款15000元。药酒加
儒家是中国古代最有影响的学派,对中国、东亚、东南亚乃至全世界都产生过深远的影响。下列有关儒家思想的说法不正确的是()。
下列属于反应时的是()
最新回复
(
0
)