首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x0的邻域内四阶可导,且|f(x)(4)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有|f’’(x0)-(x-x0)2,其中x’为x关于x0的对称点.
设f(x)在x0的邻域内四阶可导,且|f(x)(4)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有|f’’(x0)-(x-x0)2,其中x’为x关于x0的对称点.
admin
2018-05-22
55
问题
设f(x)在x
0
的邻域内四阶可导,且|f(x)
(4)
|≤M(M>0).证明:对此邻域内任一异于x
0
的点x,有|f’’(x
0
)-
(x-x
0
)
2
,其中x’为x关于x
0
的对称点.
选项
答案
由f(x)f(x
0
)+f’(x
0
)(x-x
0
)+[*](x-x
0
)
2
+[*](x-x
0
)
3
+[*](x-x
0
)
4
, f(x’)=f(x
0
)+f’(x
0
)(x-x
0
)+[*](x’-x
0
)
2
+[*](x’-x
0
)
3
+[*](x’-x
0
)
4
, 两式相加得 f(x)+f(x’)-2f(x
0
)=f’’(x
0
)(x-x
0
)
2
+[*][f
(4)
(ξ
1
)+f
(4)
(ξ
2
)](x-x
0
)
4
, 于是 |f’’(x
0
)-[*][f
(4)
(ξ
1
)|+|f
(4)
(ξ
2
)|](x-x
0
)
2
, 再由|f
(4)
(x)|≤M,得 |f’’(x
0
)-[*](x-x
0
)
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/sqk4777K
0
考研数学二
相关试题推荐
微分方程yy’+y’2=0满足初始条件的特解是________.
矩阵的非零特征值是_______.
曲线的斜渐近线方程为______.
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x)的表达式
设函数,则∫1+∞f(x)dx=______.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(1)求a的值.(2)将β1,β2,β3用α1,α2,α3线性表示
设F(x)=∫x2x+πesintsintdt,则F(x)
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,X1,X2是分别属于λ1和λ2的特征向量,试证明X1+X2不是A的特征向量.
把当x→0时的无穷小量α=In(1+x2)一In(1一x4),y=arctanx—x排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
随机试题
A.房间隔缺损B.室间隔缺损C.动脉导管未闭D.法洛四联症E.动脉导管未闭合并肺动脉高压周围血管征见于
非矢量图形只能制作________________动画。
Theuniversityhaslaunchedaresearchcentertodevelopnewwaysof______bacteriawhichhavebecomeresistanttodrugtreatme
张某在2006年初投资了10000元购买基金,持有6个月就挣了1200元,张某的年平均投资收益率为()
某企业将2年前购置的一块土地使用权转让,当初取得该土地使用权时支付金额420万元,转让时取得收入426万元,转让时发生相关费用6万元。该企业关于上述业务正确的税务处理为()。
()是风险管理的最基本要求。
某商场在进行“满百省”活动,满100省10,满200省30,满300省50。大于400的消费只能折算为等同于几个100、200、300的加和。已知一位顾客买某款衬衫1件支付了175元,那么买3件这样的衬衫最少需要:
常用的数据传输速率单位有kbps、Mbps、Gbps。1Gbps等于
以下数组定义语句中,错误的是
Themostsuccessfulattempts,however,toputonahighlyculturedairhavebeenmadeonlongwordsandexpressions.
最新回复
(
0
)