首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B为3阶矩阵,且满足2A-1B=B一4E,其中E是3阶单位矩阵. (1)证明:矩阵A-2E可逆; (2)若,求矩阵A.
已知A,B为3阶矩阵,且满足2A-1B=B一4E,其中E是3阶单位矩阵. (1)证明:矩阵A-2E可逆; (2)若,求矩阵A.
admin
2014-01-26
61
问题
已知A,B为3阶矩阵,且满足2A
-1
B=B一4E,其中E是3阶单位矩阵.
(1)证明:矩阵A-2E可逆;
(2)若
,求矩阵A.
选项
答案
(1)由2A
-1
B=B-4E,知 AB—2B—4A=0. 从而(A-2E)(B-4E)=8E,或(A-2E).[*](B-4E)=E. 故A-2E可逆,且 (A-2E)
-1
=[*](B-4E). (2)由(1)知A=2E+8(B-4E)
-1
, 而[*] 故[*]
解析
[分析] 将给定矩阵等式化简整理为(A-2E).C=E,则可得到(1)的证明.再由(1)得
A=2E+8(B-4E)
-1
.
[评注] 在已知一矩阵等式的情况下,讨论某矩阵的可逆性、求逆矩阵或求某个矩阵,一般均应将已知等式化简为逆矩阵的定义形式进行分析.
转载请注明原文地址:https://kaotiyun.com/show/dh34777K
0
考研数学二
相关试题推荐
设函数f(u)具有连续导数,且z=f(excosy)满足若f(0)=0,求f(u)的表达式.
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:(Ⅰ)0≤∫axg(t)dt≤x一a,x∈[a,b](Ⅱ)≤∫abf(x)g(x)dx。
(13年)设(X,Y)是二维随机变量,X的边缘概率密度为fX(χ)=在给定X=χ(0<χ<1)的条件下Y的条件概率密度为(Ⅰ)求(X,Y)的概率密度f(χ,y);(Ⅱ)求Y的边缘概率密度fY(χ);(Ⅲ)求P{X>2Y}.
(87年)假设D是矩阵A的r,阶子式,且D≠0,但含D的一切r+1阶子式都等于0.那么矩阵A的一切r+1阶子式都等于0.
[2006年]设随机变量X,Y相互独立,且均服从区间[0,3]上的均匀分布,则P(max(X,Y)≤1)=__________.
(2012年)由曲线y=和直线y=x及y=4x在第一象限中围成的平面图形的面积为______。
设A为3阶矩阵,α1,α2,α3是线性无关的向量组.若Aα1=α1+α2,Aα2=α2+α3,Aα3=α1+α3,则|A|=_______.
(2000年)计算二重积分其中D是由曲线(a>0)和直线y=一x围成的区域。
设t>0,则当t→0时,f(t)=[1-cos(X2+y2)]dxdy是t的n阶无穷小量,则n为()。
求∫e2x(tanx+1)2dx.
随机试题
驾驶机动车遇到这种情况要靠右侧停车等待。
当旧的经济关系日益腐朽,新的经济关系日益形成时,旧的道德体系也必将为新的道德体系所代替。人们的道德水平必然随着社会实践由低级到高级的发展而不断进步。这说明【】
日本血吸虫:中华支睾吸虫:
女性,26岁。间歇性牙龈出血伴月经过多1年。体检:双下肢可见散在出血点及紫癜,肝脾不大。血红蛋白120g/L,红细胞4.6×1012/L,白细胞5.5×109/L,分类正常,血小板25×109/L。特发性血小板减少性紫癜诊断要点不包括
十二指肠癌较罕见发生在哪段?()。
根据《中华人民共和国水污染防治法》对饮用水水源保护区的有关规定,下列说法中正确的是()。
我国地貌景观可分为花岗岩山地、岩溶山水、丹霞地貌等等,下列哪一组景观是上述三种地貌景观的典型代表()。
一线贯通是公文中显示主旨的方法之一,指的是主旨分散于一篇文章各个部分的小标题、小观点或者是条旨句、段旨句中,起一个穿针引线、提纲挈领的作用。()
[*]
HereIwanttotrytogiveyouananswertothequestion:whatpersonalqualitiesare【C1】______inateacher?Probablynotwope
最新回复
(
0
)