首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )
admin
2018-04-12
42
问题
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )
选项
A、矩阵C的行向量组与矩阵A的行向量组等价。
B、矩阵C的列向量组与矩阵A的列向量组等价。
C、矩阵C的行向量组与矩阵B的行向量组等价。
D、矩阵C的列向量组与矩阵B的列向量组等价。
答案
B
解析
方法一:把矩阵A,C按列分块:A=(α
1
,α
2
,…,α
n
),C=(γ
1
,γ
2
,…,γ
n
),由于AB=C,则可知
(α
1
,α
2
,…,α
n
)
=(γ
1
,γ
2
,…,γ
n
)。
得到矩阵C的列向量组可用矩阵A的列向量组线性表示。同时由于B可逆,则A=CB
-1
。
同理,矩阵A的列向量组可用矩阵C的列向量组线性表示,所以矩阵C的列向量组与矩阵A的列向量组等价。应该选B。
方法二:可逆矩阵可表示为若干个初等矩阵的乘积,于是A经过有限次初等列变换化为C,而初等列变换保持矩阵列向量组的等价关系,故选B。
转载请注明原文地址:https://kaotiyun.com/show/sxk4777K
0
考研数学二
相关试题推荐
设有函数试分析在点x=0处,k为何值时,f(x)有极限;k为何值时,f(x)连续;k为何值时,f(x)可导.
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ζ,使f"’(ζ)=3.
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
随机试题
电阻元件的参数可用()来表达。
下列关于宅基地使用权的说法正确的有()
剧烈运动时尿量减少的主要原因是
依照《执业医师法》的规定,不予注册的情形不包括
下列不属于慢性苯中毒的特点的是()
茯苓桂枝甘草大枣汤证的辨证要点是()。
看问题“只见树木,不见森林”是()。
警察在嘈杂的人群中能够迅速辨别出罪犯。警察做到这一点所运用的思维类型是
有以下程序#inculde#inculdestrtictA{inta;charB[10];douBlec;};voidF(structAt);main(){structAa={1001,”zhangDa”,1
Mostofusaretaughttopayattentiontowhatissaid-thewords.Wordsdoprovideuswithsomeinformation,butmeaningsarede
最新回复
(
0
)