首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(18)已知a是常数,且矩阵A=可经初等列变换化为矩阵B= (1)求a; (2)求满足AP=B的可逆矩阵P.
(18)已知a是常数,且矩阵A=可经初等列变换化为矩阵B= (1)求a; (2)求满足AP=B的可逆矩阵P.
admin
2018-08-01
38
问题
(18)已知a是常数,且矩阵A=
可经初等列变换化为矩阵B=
(1)求a;
(2)求满足AP=B的可逆矩阵P.
选项
答案
(1)对矩阵A作初等行变换: [*] 由此知A的秩r(A)=2;又因为初等列变换不改变矩阵的秩,所以矩阵B的秩也为2,对B作初等行变换: [*] 由此可知r(B)=2[*]a=2,所以a=2. (2)由(1)已知a=2,对矩阵(A B)作初等行变换: [*] 设矩阵B按列分块为B=(β
1
,β
2
,β
3
),则由上面的阶梯形矩阵知: 方程组Ax=ββ
1
的通解为x=[*],k
1
为任意常数; 方程组Ax=β
2
的通解为x=[*],k
2
为任意常数; 方程组Ax=β
3
的通解为x=[*],k
3
为任意常数. 所以矩阵方程AX=B的解为 [*] 由于行列式|X|=k
3
-k
2
.所以当k
3
≠k
2
时矩阵x可逆,故所求的矩阵P=X(k
3
≠k
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/t2j4777K
0
考研数学二
相关试题推荐
设x与y均大于0且x≠y,证明
(2007年试题,一)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设α,β为四维非零的正交向量,且A=αβT,则A的线性无关的特征向量个数为().
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ10)=f’(ξ2)=0.
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
用变量代换x=lnt将方程化为y关于t的方程,并求原方程的通解.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组Ax=0的通解.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αS).
随机试题
可同时形成菊形团和假菊形团结构的肿瘤是
男,19岁。10天前有发热,继之有食欲不佳,伴恶心、呕吐。自服抗生素治疗体温未见下降,尿色深如茶,来院诊治,以往有肝炎史。体检:巩膜可疑黄染,右上腹有轻度压痛,肝肋下2cm,质中等,有压痛,脾未及。根据病史与体检。以下哪项不是该病人应首选的检查项目
招标师的主要工作是依法开展招标采购活动,但不包括()。
公路路基工程的抗滑桩宜布置在(),且嵌岩段地基强度较高地段。
原始凭证应当从实质性和形式上两方面进行审核。()
教育对生产力的促进作用主要表现在:教育再生产劳动力和_____。
说话不仅是一种生理功能,更是一种能力。会说话的人,纵然__________,滔滔不绝,听者也不以为苦,纵然__________,一字千金,也能绕梁三日。成功人士大多是成功的说话者,毫不夸张地说,其成功至少有一半是用舌头__________的。依次填入画横线
[*]
Thisstorybeganabout10yearsago.Iwascomingoutofaverybadmarriage.Forsevenlongyearsmyhusbandspenthiseverywa
Thetranslatormusthaveanexcellent,up-to-dateknowledgeofhissourcelanguages,full【C1】_____inthehandlingofhistarge
最新回复
(
0
)