首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设半径为R的球面∑的球心在定球面x2+y2+z2=a2(a>0)上,问R为何值时球面∑在定球面内部的那部分面积最大?
设半径为R的球面∑的球心在定球面x2+y2+z2=a2(a>0)上,问R为何值时球面∑在定球面内部的那部分面积最大?
admin
2016-10-26
76
问题
设半径为R的球面∑的球心在定球面x
2
+y
2
+z
2
=a
2
(a>0)上,问R为何值时球面∑在定球面内部的那部分面积最大?
选项
答案
可设∑的球心为(0,0,a),∑的方程是x
2
+y
2
+(z一a)
2
=R
2
,与定球的交线为a
2
一z
2
=R
2
一(z—a)
2
,x
2
+y
2
=R
2
一(z—a)
2
,即 [*] ∑在定球内部那部分在Oxy平面上的投影区域为 [*] 这部分球面的方程是z=a一[*](x,y)∈D.它的面积是 [*] 现计算 S′(R)=4πR-[*].因S(0)=S(2a)=0,所以R=[*]时,∑在定球内部的那部分面积最大.
解析
转载请注明原文地址:https://kaotiyun.com/show/t9u4777K
0
考研数学一
相关试题推荐
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
设Q={(x,y,z)丨x2+y2+z2≤1},求.
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).设
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).设
设有一半径为R的球体,P0是球面一定点,球体上任意一点的密度与该点到P0的距离平方成正比(比例常数k>0),求球体的重心的位置.
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
随机试题
西方发达国家地方分权化的主要原因是()
有关AT1受体兴奋并导致升压的机理叙述正确的不包括:
A.支气管腺体肥大、增生;黏膜上皮杯状细胞增多B.肺泡扩张,肺泡壁菲薄或断裂C.肺泡上皮增生,细胞内包涵体形成D.细支气管及周围肺泡化脓性炎E.肺组织高度纤维化病毒性肺炎
某患者,一上前牙牙冠大部缺损,作桩冠修复时,根管制备的长度应达到根长的
以下关于全冠牙体预备的说法哪项是错误的
男,52岁。因左上颌骨切除后需行游离植皮,在左大腿切取中厚皮片后,供区创面的处理是
项目决策分析与评价是指对不同研究阶段的方案构造,并对其进行分析评价的全过程,其目的是()。
为推动基础工作信息化建设,打造派出所智慧警务模式,社区民警小万在派出所的支持下,经过刻苦钻研,自主研发了“互联网+”模式下的“社区警务平台”(如下图)。群众可通过“平台”选择获取便捷高效的服务;社区民警可通过“平台”上传信息,与街道办事处共享、共建、共维护
文慧是新东方学校的人力资源培训讲师,负责对新入职的教师进行入职培训,其PowerPoint演示文稿的制作水平广受好评。最近,她应北京节水展馆的邀请,为展馆制作一份宣传水知识及节水工作重要性的演示文稿。节水展馆提供的文字资料及素材参见“水资源利用与节水(
【B1】【B18】
最新回复
(
0
)