首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种器件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为20小时.在使用中当一个器件损坏后立即更换另一个新的器件,如此连续下去.已知每个器件进价为a元,试求在年计划中应为此器件做多少预算,才可以有95%的把握保证一年够用(假定一年按2000
设某种器件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为20小时.在使用中当一个器件损坏后立即更换另一个新的器件,如此连续下去.已知每个器件进价为a元,试求在年计划中应为此器件做多少预算,才可以有95%的把握保证一年够用(假定一年按2000
admin
2016-11-03
41
问题
设某种器件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为20小时.在使用中当一个器件损坏后立即更换另一个新的器件,如此连续下去.已知每个器件进价为a元,试求在年计划中应为此器件做多少预算,才可以有95%的把握保证一年够用(假定一年按2000个工作小时计算).
选项
答案
设年计划购进n个此种器件,则预算应为na元.每个器件使用寿命为X
i
(1≤i≤n),则X
i
相互独立,且都服从参数为λ的指数分布.依题意知 λ=1/20, E(X
i
)=1/λ, D(X
i
)=1/λ
2
, 且n应使 P([*]X
i
≥2000)≥0.95, 即 P(0≤[*]X
i
<2000)≤0.05. 由于n相当大,且 [*] 根据独立分布的中心极限定理,得到 [*] 解得n≥118,故年计划预算最少为118a元.
解析
求解与随机变量之和的概率有关的问题时,常利用其分布律进行,但随机变量个数较多时,可利用中心极限定理近似计算.
转载请注明原文地址:https://kaotiyun.com/show/tHu4777K
0
考研数学一
相关试题推荐
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
在某公共汽车站甲、乙、丙三人分别等1,2,3路公共汽车.设每个人等车时间(单位:min)均服从[0,5]上的均匀分布,求三人中至少有两人等车时间不超过2min的概率.
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)],试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
已知齐次线性方程组其中,试讨论a1,a2,…,an和b满足何种关系时,(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
设二次型f(x1,x2,x3)=XTAX=ax12+222+(-232)+2bx32(b>0),其中二次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换
计算曲面积分I=,其中∑是曲面2x2+2y2+z2=4的外侧。
随机试题
简述学习“中国文化概论”课程的目的。
下列哪项不是大陆法系国家规定的违约金功能()。
A.头孢曲松B.红霉素C.链霉素D.多粘菌素E.四环素
关于化妆品生产及管理的说法正确的有
工程项目是按照一个总体设计建设的,可以形成生产能力或使用价值的若干单位工程的总体,这是工程项目的()特点体现。
根据《1990年国际贸易术语解释通则》,以FOB价格条件成交的买方应承担相应的责任,根据此规定,以下各项中不属于买方责任的是()。
下列4组法律行为中,都能通过代理人进行的是()。
藻类属于下列哪一种类()。
IP电话系统中,下列哪项不是IP电话系统的基本组件?()
Nord’sNet:"WaysofKnowing"fortheScienceClassroomItisapparentthatProfessorWarrenA.NordhasfoundEddington’s
最新回复
(
0
)