首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f’(c)|≤2a+
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f’(c)|≤2a+
admin
2017-01-14
70
问题
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f’(c)|≤2a+
选项
答案
对f(x)在x=c处应用泰勒公式,展开可得 f(x)=f(c)+f’(c)(x-c)+[*](x-c)
2
, (*) 其中ξ=c+θ(x-c),0<θ<1。 在(*)式中令x=0,则有 f(0)=f(c)+f’(c)(0-c)+[*](0-c)
2
,0<ξ
1
<c<1, 在(*)式中令x=1,则有 f(1)=f(c)+f’(c)(1-c)+[*](1-c)
2
,0<ξ
2
<c<1, 将上述的两个式子相减得到 f(1)-f(0)=f’(c)+[*][f’’(ξ
2
)(1-c)
2
-f’’(ξ
1
)c
2
], 因此 |f’(c)|=|f(1)-f(0)-[*][f’’(ξ
2
)(1-c)
2
-f’’(ξ
1
)c
2
]| ≤|f(1)|+|f(0)|+[*]|f’’(ξ
2
)|(1-c)
2
+[*]|f’’(ξ
1
)|c
2
≤2a+[*][(1-c)
2
+c
2
]。 又因当c∈(0,1)时,有(1-c)
2
+c
2
≤1,所以|f’(c)|≤2a+[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tRu4777K
0
考研数学一
相关试题推荐
[*]
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
求下列已知曲线围成的平面图形绕指定的轴旋转而形成的旋转体的体积:(1)xy=a2,y=0,x=a,x=2a(a>0)绕x轴和y轴;(2)x2+(y-2)2=1,绕x轴;(3)y=lnx,y=0,x=e,绕x轴和y轴;(4)x2+y2=4,
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
设随机变量X和Y的方差存在且不等于0,则D(X+Y):DX+DY是X和Y
设随机变量X和Y相互独立,X在区间(0,2)上服从均匀分布,y服从参数为1的指数分布,则概率P{X+Y>1}=().
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
(Ⅰ)因为[*]所以[*]单调减少,而a≥0,即[*]是单调减少有下界的数列,根据极限存在准则,[*](Ⅱ)由(Ⅰ)得0≤[*]对级数[*]因为[*]存在,所以级数[*]根据比较审敛法,级数
数列极限=______________.
设y=y(x)是由方程y2+xy+x2一x=0确定的满足y(1)=一1的连续函数,则=_______________.
随机试题
在Excel2003工作簿中,有关移动和复制工作表的说法正确的是__________。()
膀胱结石治疗原则不包括下列哪一项
当事人在合同的订立过程中有过错,给对方造成损失,应当承担缔约过失责任的情形包括()等。
下列关于客户信用评级的说法,不正确的是()。
应当注意的是:这里的可能错报总额一般是指各财务报表项目可能的错报金额的汇总数,但也可能包括上一期间的任何未更正可能错报对本期财务报表的影响。上一期间的未更正可能错报与本期未更正可能错报累计起来,可能会导致本期财务报表产生重大错报。因此,注册会计师估计本期的
如图所示,质量为m的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为g,此物体在斜面上上升的最大高度为h,则在这个过程中物体()。
科学技术影响人类的未来生活——2001年英译汉及详解Inlessthan30years’timetheStarTrekholodeckwillbeareality.Directlinksbetweenthebrain
【S1】【S7】
Hefoundhisfatherhardtounderstandbecausehisfatherwastooshortandthin.Hisfathereverhadaclosefriend.
Whydowomenlivelongerthanmen?______Male’sheartpowertopumpbloodaroundthebodycouldhavedecreasedby______ofits
最新回复
(
0
)