首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)与f(x,y)均为可微函数,且φ’y(x,y)≠0.已知点(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( )
设f(x,y)与f(x,y)均为可微函数,且φ’y(x,y)≠0.已知点(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( )
admin
2017-05-18
86
问题
设f(x,y)与f(x,y)均为可微函数,且φ’
y
(x,y)≠0.已知点(x
0
,y
0
)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( )
选项
A、若f’
x
(x
0
,y
0
)=0,则f’(x
0
,y
0
)=0.
B、若f’
x
(x
0
,y
0
)=0,则f’(x
0
,y
0
)≠0.
C、若f’
x
(x
0
,y
0
)≠0,则f’(x
0
,y
0
)=0.
D、若f’
x
(x
0
,y
0
)≠0,则f’(x
0
,y
0
)≠0.
答案
D
解析
这是一个与条件极值相关的定性问题,应从拉格朗日乘数法入手考虑.作拉格朗日函数
L(x,y)=f(x,y)+λφ(x,y),
由拉格朗日乘数法及点(x
0
,y
0
)是f(x,y)在条件φ(x,y)=0的一个极值点,有
如果f’
x
(x
0
,y
0
)≠0,则必有f’
y
(x
0
,y
0
)≠0(否则,由f’
y
(x
0
,y
0
)=0及(2)式知λφ’
y
(x
0
,y
0
)=0,由φ’
y
(x
0
,y
0
)≠0得λ=0,再由(1)式得f’
x
(x
0
,y
0
)=0,与已知条件f’
x
(x
0
,y
0
)≠0矛盾).故应选D.
转载请注明原文地址:https://kaotiyun.com/show/tSu4777K
0
考研数学一
相关试题推荐
[*]
[*]
函数u=x2-2yz在点(1,-2,2)处的方向导数量大值为______.
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过a表示为b2=_________.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
若四阶矩阵A与B为相似矩阵,A的特征值为1/2、1/3、1/4、1/5,则行列式|B-1-E|=_________.
极限=__________.
(2008年试题,4)设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是().
设y=e2x+(x-)ex是二阶常系数非齐次线性微分方程+by=cex的一个特解,则
随机试题
Wewerelateasusual.Myhusbandhad【C1】______wateringtheflowersinthegardenbyhimself,andwhenhediscoveredthatheco
细胞未受刺激时存在于细胞内外两侧的电位差为
王先生,68岁,肺癌晚期,入院后了解到病情后,情绪异常,抱怨家人不关心,指责医护人员不尽力,在治疗护理中配合差。请问:针对患者的特殊心理反应,护士应如何护理?
药用部位为内壳的中药材是
某省的药品经营企业在发布感冒药的广告时,发现其内容存在虚假违法的内容。对于该企业的处罚部门是()。
在与治理层沟通时,下列说法中,错误的有()。
下列选项中,不属于从基本形态对设计进行分类的是()
2011年,某市工业企业(规模以上,下同)用水总量193.27亿立方米,比上年减少1.66亿立方米。其中,取水总量41.26亿立方米,增加0.57亿立方米;河湖海冷却水86.25亿立方米,增加1.09亿立方米。2011年该市工业企业
16位真彩色显示器可显示的颜色种数为()。
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
最新回复
(
0
)