首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]上具有二阶导数,且f(0)=f(1)=0,证明:
设函数f(x)在[0,1]上具有二阶导数,且f(0)=f(1)=0,证明:
admin
2019-02-20
47
问题
设函数f(x)在[0,1]上具有二阶导数,且f(0)=f(1)=0,
证明:
选项
答案
将f(x)在[*]处展成带拉格朗日余项的一阶泰勒公式,有 [*] 在上式中分别令x=0,x=1,并利用f(0)=f(1)=0即得 [*] 将①式与②式相加消去未知的一阶导数值[*]可得 [*] 由于 [*] 因此 [*]
解析
为了得到f"(x)的估值可以利用泰勒公式找出它与f(0),f(1)及minf(x)之间的关系.由于题设条件中给出了f(0)与f(1)的函数值,又涉及二阶导数f"(x),因此可考虑利用f(0)和f(1)在展开点
处的带拉格朗日余项的一阶泰勒公式.
转载请注明原文地址:https://kaotiyun.com/show/tTP4777K
0
考研数学三
相关试题推荐
设f(x)为不恒等于零的奇函数,且f’(0)存在,则函数
已知β1,β2是非齐次线性方程组Aχ=b的两个不同的解,α1,α2是对应齐次线性方程组Aχ=0的基础解系,k1,k2为任意常数,则方程组Aχ=b的通解(一般解)是【】
设D是Oxy平面上以A(1,1),B(一1,1)和C(一1,一1)为顶点的三角形区域,则
已知∫f’(x3)dx=x3+C(C为任意常数),则f(x)=________。
在半径为R的球体上打一个半径为r的圆柱形穿心孔(r<R),孔的中心轴为球的直径,试求穿孔后的球体的剩余部分的体积.若设孔壁的高为h证明此体积仅与h的值有关.
证明:当0<a<b<π时,bsinb+2cosb+nb>asina+2cosa+πa.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(b)=0,f’+(a)=>0,试证:存在点ξ∈(a,b),使得f"(ξ)<0.
设函数z=f(x,y)在点(x0,y0)的某邻域内有定义,且在点(x0,y0)处的两个偏导数f’x(x0,y0),f’y(x0,y0)都存在,则
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;
已知n阶矩阵A的每行元素之和为a,当k是自然数时,求Ak的每行元素之和.
随机试题
能够明确甲状腺单发结节性质的最可靠方法是
下列哪项适宜放置宫内节育器
关于Partnering模式的论述不正确的有()。
为了适应城市交通迅速发展的需要,为缓解城市交通拥堵的矛盾,大中城市开始落实“优先发展城市公共交通的战略”规划,并逐步完善综合交通系统和建设新的交通设施,主要表现在()。
某企业在产品的检验阶段,不论是对最终产品或是在制品,都把质量信息及时反馈并认真处理,这体现了全面质量管理实施原则中的()。
根据《中华人民共和国治安管理处罚法》,有权开具对与违反治安管理行为有关的场所、物品、人身进行检查的检查证明文件的是:
成就动机是个体努力追求自认为重要且有价值的工作,以高标准来要求自己,以取得成功为目标,并尽量使工作达到完美状态的动机。 根据上述定义,下列没有体现出成就动机的是:
(河北事业单位2011—9)一个5×5×5的立方体表面全部涂上红色,再将其分割成1×1×1的小立方体,取出全部至少有一个面是红色的小立方体,组成表面全部是红色的立方体,可组成的长方体的体积最大是()。
南北朝时期,北朝东魏政权颁布的法典是()。(2008年单选41)
(浙江大学2008年试题)Sincetheearly1930s,Swissbankshadpridedthemselvesontheirsystemofbankingsecrecyandnumberedaccou
最新回复
(
0
)