首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(02年)设齐次线性方程组 其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
(02年)设齐次线性方程组 其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
admin
2017-05-26
54
问题
(02年)设齐次线性方程组
其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
选项
答案
方程组的系数行列式 [*] (1)当a≠b且a≠(1-n)b时,方程组仅有零解. (2)当a=b时,对系数矩阵A作行初等变换,有 [*] 原方程组的同解方程组为 χ
1
+χ
2
+…+χ
n
=0 方程组的基础解系为 α
1
=(-1,1,0,…,0)
T
,α
2
=(-1,0,1,…,0)
T
,…,α
n-1
=(-1,0,0,…,1)
T
,方程组的全部解为 χ=c
1
α
1
+c
2
α
2
+…+c
n-1
α
n-1
(c
1
,c
2
,…,c
n-1
为任意常数). (3)当a=(1-n)b时,对系数矩阵A作行初等变换,有 [*] 原方程组的同解方程组为 [*] 其基础解系为β=(1,1,…,1)
T
.方程组的全部解是χ=cβ(c为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/ttH4777K
0
考研数学三
相关试题推荐
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=,其中A的逆矩阵为B,则a=_________.
向量组a1,a2,…,am线性无关的充分必要条件是().
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
设A为三阶矩阵,A的特征值为λ1=1,λ22,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设曲线方程为y=e-x(x≥0).(Ⅰ)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:BTB是正定矩阵.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则fˊ(0)=().
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=________.
设A是n阶方阵,X是任意的n维列向量,B是任意的n阶方阵,则下列说法错误的是()
随机试题
7504C紫外可见分光光度计通常要调校的是()。
对ABO血型系统的叙述,错误的是
肾病综合征的治疗措施中,哪项是错误的( )
某媒体未征得艾滋病孤儿小兰的同意.发表了一篇关于小兰的报道,将其真实姓名、照片和患病经历公之于众。报道发表后,隐去真实身份开始正常生活的小兰再次受到歧视和排斥。下列哪一选项是正确的?(2007年卷三第22题)
与CM/Non--Agency模式相比,CM/Agency合同结构具有的特点不包括()。
在预应力钢筋混凝土结构中,混凝土的强度等级不应低于()。
承包人应于每月()日向监理人报送上月20日至当月19日已完成的工程量报告。
将毛坯上的多余材料去除,从而获得几何形状、加工精度和表面粗糙度都符合要求的零件加工方法称为()。
在抗日战争的初期和中期,游击战被提到了战略的地位,具有了全局性的意义,其根本的依据是
A、 B、 C、 B
最新回复
(
0
)