首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=[α1,α2,α3,α4]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=[α3,α2,α1,β一α4],求方程组Bx=α1—α2的通解.
已知A=[α1,α2,α3,α4]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=[α3,α2,α1,β一α4],求方程组Bx=α1—α2的通解.
admin
2017-07-26
105
问题
已知A=[α
1
,α
2
,α
3
,α
4
]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)
T
+k(1,一2,4,0)
T
,又B=[α
3
,α
2
,α
1
,β一α
4
],求方程组Bx=α
1
—α
2
的通解.
选项
答案
由方程组的解Ax=β的结构知 r(A)=r[α
1
,α
2
,α
3
,α
4
]=3, α
1
+2α
2
+2α
3
+α
4
=β,α
1
—2α
2
+α
3
=0. 因为B=[α
3
,α
2
,α
1
,β一α
4
]=[α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
],且α
1
,α
2
,α
3
线性相关,可见r(B)=2. 由[*]=α
1
—α
2
知,(0,一1,1,0)
T
是方程组Bx=α
1
—α
2
的一个解. [*] 知(4,一2,1,0)
T
,(2,一4,0,1)
T
是Bx=0的两个线性无关的解,故Bx=α
1
—α
2
的通解是 (0,一1,1,0)
T
+k
1
(4,一2,1,0)
T
+k
2
(2,一4,0,1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/tyH4777K
0
考研数学三
相关试题推荐
[*]
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
设某产品的成本函数为c=aq2+bq+c,需求函数为a=1/e(d-p),其中C为成本,q为需求量(即产量),p为单价,a,b,c,d,e都是正的常数,且d>b,求:(Ⅰ)利润最大时的产量及最大利润;(Ⅱ)需求对价格的弹性;(Ⅲ)需求对价格弹性的绝对
设x轴正向到方向l的转角为ψ,求函数f(x,y)=x2-xy+y2在点(1,1)沿方向z的方向导数,并分别确定转角ψ,使得方向导数有(1)最大值,(2)最小值,(3)等于0.
设f(x)为二阶连续可导,且.证明级数绝对收敛.
设(I)讨论f(x)的连续性,若有间断点并指出间断点的类型;(Ⅱ)判断f(x)在(一∞,1]是否有界,并说明理由.
讨论函数的连续性.
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机取出一个地区,再从中抽取两份报名表.(1)求先抽到的一份报名表是女生表的概率p;(2)设后抽到的一份报名表为男生的报名表,求先抽到的报名
设f(x)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax-1).
设f(x)是连续函数.求初值问题的解,其中a>0;
随机试题
下列关于消毒剂的毒理学第一阶段试验结果的判定中,不正确的是
该患儿的诊断是首选的急救措施为
患者,女性,35岁,人工流产后出现双手指关节痛3个月,伴晨僵约1小时左右,对症用中药治疗效果不佳;查体双手第1、2掌指关节(MCP)肿胀,压痛明显,第4近端指间关节(PIP)肿胀,压痛明显;X线示关节间隙正常,双手骨质疏松,可见小囊性破坏样改变此患者最
A.腹水比重1.018,李凡他(Rivalta)试验阳性C.乳糜样腹水D.腹水细胞总数>1000×106/L,分类以中性粒细胞为主E.腹水细胞总数为100×106/L,分类以间皮细胞为主
石灰工业废渣稳定土可分为()几类。
某种规格的绝缘材料,规定其击穿电压不低于1200V,已知样本均值X=4000V,样本标准差s=1000V,则该工序的过程能力指数CpL约为()。
南的趵突泉、大明湖、历下亭合称“济南三胜”。( )
爱因斯坦说:“踏着别人的脚步,就看不到自己的脚印。”谈谈你对这句话的理解。
根据继承人继承遗产的方式,可以将继承分为()。
Inspiring,chicandeffortlesslyelegant—that’swhatdesignersatLondonFashionWeekhailedKateMiddleton’sstyle,ashersa
最新回复
(
0
)