首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=[α1,α2,α3,α4]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=[α3,α2,α1,β一α4],求方程组Bx=α1—α2的通解.
已知A=[α1,α2,α3,α4]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=[α3,α2,α1,β一α4],求方程组Bx=α1—α2的通解.
admin
2017-07-26
70
问题
已知A=[α
1
,α
2
,α
3
,α
4
]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)
T
+k(1,一2,4,0)
T
,又B=[α
3
,α
2
,α
1
,β一α
4
],求方程组Bx=α
1
—α
2
的通解.
选项
答案
由方程组的解Ax=β的结构知 r(A)=r[α
1
,α
2
,α
3
,α
4
]=3, α
1
+2α
2
+2α
3
+α
4
=β,α
1
—2α
2
+α
3
=0. 因为B=[α
3
,α
2
,α
1
,β一α
4
]=[α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
],且α
1
,α
2
,α
3
线性相关,可见r(B)=2. 由[*]=α
1
—α
2
知,(0,一1,1,0)
T
是方程组Bx=α
1
—α
2
的一个解. [*] 知(4,一2,1,0)
T
,(2,一4,0,1)
T
是Bx=0的两个线性无关的解,故Bx=α
1
—α
2
的通解是 (0,一1,1,0)
T
+k
1
(4,一2,1,0)
T
+k
2
(2,一4,0,1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/tyH4777K
0
考研数学三
相关试题推荐
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
A、 B、 C、 D、 D
设数列{an},{bn}满足ean=ean一an(n=1,2,3,…),求证:若an>0,则bn>0;
验证下列函数满足拉普拉斯方程uxx+uxy=0:(1)u=arctanx/y;(2)u=sinx×coshy+cosx×sinhy;(3)u=e-xcosy-e-ycosx.
幂级数的收敛半径为_________.
设u=二阶连续可导,又,求f(x).
设求f’(x)并讨论其连续性.
设z=f(x,y),x=g(y,z)+其中f,g,φ在其定义域内均可微,求
随机试题
对列入城建档案馆(室)接收范围的工程,工程竣工验收后()个月内,向当地城建档案馆(室)移交一套符合规定的工程档案。
混悬液的制备方法中描述正确的是:
下列关于互斥项目的优选问题的说法中,不正确的有()。
下列有关文学常识的表述,错误的一项是()
教师申诉的程序主要有()。
乒乓球在海上运输中属于易燃品,一日你处接到电话,一艘装运乒乓球的船舶失火,作为接警人员,你会怎么处理?
A、 B、 C、 D、 D首先观察所给图形,图形各异,考虑个数变化型。此题规律为:所给图形的封闭空间数依次为0、1、2、3、4、5、6、7,最后一个应该为8。故选D。
A、 B、 C、 D、 C
简述清末修律的历史意义。(2014简66)
《三字经》里说:“人之初,性本善。性相近。习相远。”其中“人之初,性本善"所表达的意思,按照马克思主义的标准进行划分,属于()
最新回复
(
0
)