首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵.若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,……,Ak-1α线性无关.
设A为n阶矩阵.若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,……,Ak-1α线性无关.
admin
2022-04-02
106
问题
设A为n阶矩阵.若A
k-1
α≠0,而A
k
α=0.证明:向量组α,Aα,……,A
k-1
α线性无关.
选项
答案
令 l
0
α+l
1
Aα+……+l
k-1
A
k-1
α=0 (*) (*)两边同时左乘A
k-1
得l
0
A
k-1
α=0,因为A
k-1
α≠0,所以l
0
=0; (*)两边同时左乘A
k-2
得l
1
A
k-1
α=0,因为A
k-1
α≠0,所以l
1
=0,依次类推可得l
2
=……=l
k-1
=0,所以α,Aα,……,A
k-1
α线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/u2R4777K
0
考研数学三
相关试题推荐
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得fˊ(η)fˊ(ζ)=1.
设有矩阵Am×n,Bn×m,已知En一AB可逆,证明:En—BA可逆,且(En—BA)-1=En+B(Em一AB)-1A.
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A的特征值和特征向量.
设总体X~N(μ1,σ2),y~N(μ1,σ2)。从总体X,Y中独立地抽取两个容量为m,n的样本X1,…,Xm和Y1,…,Yn记样本均值分别为是σ2的无偏估计。求:Z的方差DZ.
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:估计数据个数n满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数规.
设a0,a1,an-1是n个实数,方阵(1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;(2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使Pλ1AP=A.
设A,B为n阶矩阵,下列命题成立的是().
设下列命题正确的是()
随机试题
健康维护计划制定的原则为()
女性,60岁。反复咳嗽、咳痰25年,心悸、气促、下肢间歇水肿3年,病情加重伴畏寒发热1周入院。体检:T38℃,呼吸急促,口唇发绀,双肺叩诊过清音,中下肺有湿啰音,心率110次/分,心律齐,无杂音,双下肢重度水肿假设该病例呼吸困难突然进一步加重,右肺
法律责任
请认真阅读下列材料,并按要求作答。请根据上述材料完成下列任务:如指导中年段小学生学习上述内容,试拟定教学目标。
社会治理是社会建设的重大任务,是国家治理的重要内容,习近平主席曾说过:“治理和管理一字之差,体现的是系统治理、依法治理、源头治理、综合施策。”其中坚持源头治理,以()为方向,及时反映和协调人民群众各方面各层次的利益诉求。
影视剧翻拍从来都是既讨巧又惹骂——利用经典多年来积累下的人气口碑,至少在吆喝声上就比原创剧占了便宜,但它们也必须面对老观众挑剔的目光。这段话主要谈论影视剧翻拍()。
女性。40岁,低热,双手腕、掌指、近指关节肿痛,伴晨僵每天2小时以上,病史5年,加重2个月。查体示双手腕关节、掌指关节肿胀,双手手指尺侧偏斜,屈曲畸形。如明确诊断,你认为最有意义检查是
法律规则和法律原则的区别,下列哪些表述是正确的?()
民族区域自治制度是我国的一项基本政治制度,是中国特色解决民族问题的正确道路的重要内容和制度保障。坚持和完善民族区域自治制度,要
Aswithotherformsofnonverbalcommunication,theuseoftouchtocommunicatefeelingsandemotionsvarieswidelyfromculture
最新回复
(
0
)