首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫ab(x)dx=f(η)(b-a); (2)若函数ψ(x)具有二阶导数,且满足ψ(2)>ψ(1),ψ(2)>∫abψ(x)dx,则至少存在一点ξ∈(1,3)
(1)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫ab(x)dx=f(η)(b-a); (2)若函数ψ(x)具有二阶导数,且满足ψ(2)>ψ(1),ψ(2)>∫abψ(x)dx,则至少存在一点ξ∈(1,3)
admin
2014-01-26
157
问题
(1)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫
a
b
(x)dx=f(η)(b-a);
(2)若函数ψ(x)具有二阶导数,且满足ψ(2)>ψ(1),ψ(2)>∫
a
b
ψ(x)dx,则至少存在一点ξ∈(1,3),使得ψ"(ξ)<0.
选项
答案
(1)设M及m分别是函数f(x)在区间[a,b]上的最大值及最小值,则 m(b-a)≤∫
a
b
f(x)≤M(b-a). 即有[*],根据闭区间上连续函数的介值定理知:存在η∈[a,b],使得[*],即∫
a
b
f(x)dx=f(η)(b-a)。 (2)由(1)的结论,可知至少存在一点η∈[2,3],使 ∫
2
3
ψ(x)dx=ψ(η)(3—2)=ψ(η)。 又由ψ(2)>∫
2
3
ψ(x)dx=ψ(η)知,2<<η<3。 对ψ(x)在[1,2]和[2,η]上分别应用拉格朗日中值定理,并注意到ψ(1)<ψ(2), ψ(η)<ψ(2)。得 [*] 存[ξ
1
,ξ
2
]上对导函数ψ’(x)应用拉格朗日中值定理,有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/bh34777K
0
考研数学二
相关试题推荐
(2009年)求二元函数f(x,y)=x2(2+y2)+ylny的极值。
(91年)曲线y=
(04年)函数f(χ)=在下列哪个区间内有界:【】
(99年)设生产某种产品必须投入两种要素,χ1和χ2分别为两要素的投入量,Q为产出量;若生产函数为Q=2χ1αχ2β,其中α,β为正常数,且α+β=1,假设两种要素的价格分别为p1和p2,试问:当产量为12时,两要素各投入多少可以使得投入总费用最小?
(16年)设函数f(χ)连续,且满足∫0χf(χ-t)dt=∫0χ(χ-t)f(t)dt+e-χ-1,求f(χ).
(96年)设f(χ)在区间[0,1]上可微,且满足条件f(1)=χf(χ)dχ,试证:存在ξ∈(0,1),使f(ξ)+ξf′(ξ)=0.
设线性方程组与方程(Ⅱ):x1+2x2+x3=a-1有公共解,求a的值及所有公共解.
[2008年]设n元线性方程组AX=b,其中证明行列式|A|=(n+1)an;
(08年)设X1,X2,…,Xn是总体N(μ,σ2)的简单随机样本,记(Ⅰ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求DT.
随机试题
幼儿对喂奶姿势的条件反射属于()
某患者女性,39岁,未婚。因怕热、多汗、消瘦3月来诊。查体:甲状腺I度肿大,无杂音,心率120次/min,律齐。检测甲状腺摄碘率:3小时36%;24小时90%。给予患者甲巯咪唑治疗6周后,症状基本缓解,T3、T4恢复正常,WBC3.7×109/L,中性
“五脏六腑之大主”是指
消化性溃疡恶变成癌后需抗癌治疗,应尽量避免使用的抗癌药是
关于级别管辖,下列说法不正确的是:
某企业为增值税一般纳税人,于2011年9月2日从甲公司购人一批产品并已验收入库,增值税专用发票上注明该批产品的价款为150万元,增值税额为25.5万元。合同中规定的现金折扣条件为2/10,1/20,n/30,假定计算现金折扣时不考虑增值税。该企业在2011
事业部制结构的不足在于()。
23,56,1130,5330,()
根据利率期限结构理论中的偏好停留假说,陡峭上升的收益率曲线表明()。
Thelinkbetweenhealthandincomeseemsprettyuncontroversial.【C1】______all,healthypeoplecanworklongerandharderthansi
最新回复
(
0
)