首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数. (Ⅰ)写出f(x)在[-2,0]上的表达式; (Ⅱ)问k为何值时,f(x)在x=0处可导.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数. (Ⅰ)写出f(x)在[-2,0]上的表达式; (Ⅱ)问k为何值时,f(x)在x=0处可导.
admin
2013-09-15
65
问题
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x
2
-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.
(Ⅰ)写出f(x)在[-2,0]上的表达式;
(Ⅱ)问k为何值时,f(x)在x=0处可导.
选项
答案
由题没,f(x)=x(x
2
-4),x∈[0,2]. 当x∈[-2,0)时,x+2∈[0,2),则由f(x)=kf(x+2)知 f(x)=kf(x+2)=k(x+2)[(x+2)
2
-4] =k(x+2)(x
2
+4x)=kx(x+2)(x+4),x∈[-2,0). 南导数定义及f(0)=0,有f
’
(0
+
)=[*] 令f
’
(0
’
)=f
’
(0
-
),则k=-(1/2),所以当k=-(1/2)时,f(x)在x=0处可导.
解析
转载请注明原文地址:https://kaotiyun.com/show/m634777K
0
考研数学二
相关试题推荐
(2002年)设函数f(x)在闭区间[a,b]上有定义,在开区间(a,b)内可导,则()
设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的数λ1,…,λm和k1,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则()
(2013年)设函数z=z(x,y)由方程(z+y)z=xy确定,则=______.
(13年)设{an}为正项数列,下列选项正确的是【】
(2014年)设随机变量X与Y的概率分布相同,X的概率分布为P{X=0}=,P{X=1}=,且X与Y的相关系数ρXY=(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}。
[2008年]如图1.3.3.2所示,曲线段方程为y=f(x),函数f(x)在区间[0,a]上有连续导数,则定积分等于().
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是()
设t>0,则当t→0时,f(t)=[1-cos(X2+y2)]dxdy是t的n阶无穷小量,则n为()。
设f(x)在x=x0的某邻域内存在二阶导数,且=a>0,则存在点(x0,f(x0))的左、右侧邻域U—与U+使得()
设A=(β-α1-2α2-3α3,α1,α2,α3),α1,α2,α3,β均是3维列向量,则方程组Ax=β有特解为________.
随机试题
喘证的病变部位在
营养不良患儿应用苯丙酸诺龙的主要作用是
声环境功能区的4b类是指()。
《中华人民共和国环境保护法》规定,任何单位和个人不得()严重污染环境的工艺、设备和产品。
当填方土料为( )时,碾压前应充分洒水湿透,以提高压实效果。
CreditMonitor模型认为,企业向银行借款相当于持有一个基于企业资产价值的看涨期权。()
共同控制资产和共同控制经营形成合营企业。()
一立方体如图所示从中挖掉一个圆柱体,然后从任意面剖开,下面哪一项不可能是该立方体的截面?
将下列句子组成一段逻辑连贯、语言流畅的文字,排列顺序最合理的是()。①然而,繁华盛景背后的旧制度却已是风烛残年、百孔千疮②德国总理默克尔赠给了中国贵宾的一幅古老地图,在无数国人心中激起波澜③在当时已经踏上现代化之路的欧洲人眼里,君权专制的
stateoftheart
最新回复
(
0
)