首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]三阶可导,且f(0)=f(1)=0.设F(x)=x2f(x),求证:在(0,1)内存在c,使得F"’(c)=0.
设f(x)在[0,1]三阶可导,且f(0)=f(1)=0.设F(x)=x2f(x),求证:在(0,1)内存在c,使得F"’(c)=0.
admin
2017-10-23
66
问题
设f(x)在[0,1]三阶可导,且f(0)=f(1)=0.设F(x)=x
2
f(x),求证:在(0,1)内存在c,使得F"’(c)=0.
选项
答案
由于F(0)=F(1)=0,F(x)在[0,1]可导,故存在ξ
1
∈(0,1)使得F’(ξ
1
)=0.又 F’(x)=x
2
f’(x)+2xf(x), 于是由F’(0)=0,F’(ξ
1
)=0及F’(x)在[0,1]可导知,存在ξ
2
∈(0,ξ
1
)使得F"(ξ
2
)=0.又因 F"(x)=x
2
f"(x)+4xf’(x)+2f(x), 于是由F"(0)=F"(ξ
2
)=0及F"(x)在[0,1]可导知,存在c∈(0,ξ
2
)[*](0,1)使得F"(c)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/uEX4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξ(x)dx=∫ξbf(x)dx.
设ATA=E,证明:A的实特征值的绝对值为1.
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定u为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求.
设随机变量X~U(0,1),在X=x(0<x<1)下,Y~U(0,x).(1)求X,Y的联合密度函数;(2)求Y的边缘密度函数.
设随机变量X满足|X|≤1,且P(X=一1)=,在{一1<X<1}发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.(1)求X的分布函数;(2)求P(X<0).
设f(x)=3x2+Ax-3(x>0),A为正常数,问A至少为多少时,f(x)≥20?
设总体X~N(μ,0.2),X1,X2,…,Xn+1为总体X的简单随机样本,记服从的分布.
某厂家生产的每台仪器,以概率0.7可以直接出厂,以概率0.3需进一步调试,经调试后以概率0.8可以出厂,以概率0.2定为不合格产品不能出厂,现该厂新生产了n(n≥2)台仪器(假设各台仪器的生产过程相互独立),求至少有两台不能出厂的概率θ
随机试题
从100人中调查对A、B两种2008年北京奥运会吉祥物的设计方案的意见,结果选A方案的人数是全体接受调查人数的3/5;选B方案的比选A方案的多6人,对两个方案都不喜欢的人数比对两个方案都喜欢的人数的1/3多2人,则两个方案都不喜欢的人数是()。
下列病变中,斜位吞钡检查,不形成食管压迹的是
A.多饮、多食、多尿、消瘦B.乏力、纳差、血压低、皮肤色素黑C.蛋白尿、水肿、高脂、低蛋白血症D.怕热多汗、疲乏无力、急躁易怒E.蛋白尿、血尿、高血压
知图5-9所示等直杆的轴力图(图中集中荷载单位为kN,分布荷载单位为kN/m),则该杆相应的荷载为()。
隐框玻璃幕墙玻璃板块制作前对基材进行的清洁工作,符合“两次擦”工艺要求的是()。
会计核算上,企业将融资租入的设备计入固定资产,体现了()原则。
观察法是学校教育中常用的研究方法。以观察者是否参与被观察对象的活动为标准,可以将观察法分为()。
要搞好接待工作,沟通好党群、政群的关系,信访接待人员一定要()。
中央电视台举办的“年度感动中国十大人物评选活动”的颁奖辞中有这样一句话:“这个风一样的年轻人,他不断超越,永不言败,代表着一个正在加速的民族。他身披国旗,一跃站在世界面前。”这段文字中“风一样的年轻人”是一个极致的比喻,它主要用于说明()。
司法工作人员帮助在押犯脱逃的,一律成立私放在押人员罪,请对这一说法进行辨析。
最新回复
(
0
)