首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
admin
2016-06-25
79
问题
如果数列{x
n
}收敛,{y
n
}发散,那么{x
n
y
n
}是否一定发散?如果{x
n
}和{y
n
}都发散,那么{x
n
y
n
}的敛散性又将如何?
选项
答案
在题设两种情况下,{x
n
y
n
}的收敛性都不能确定.现在先就{x
n
}收敛,{y
n
}发散的情况来分析.利用y
n
=[*](x
n
≠0)这个恒等式,就可得到下述结论:若{x
n
}收敛且不收敛于零,{y
n
}发散,则{x
n
y
n
}必发散.这是因为若{x
n
y
n
}收敛,且{x
n
}收敛而极限不等于零,则从上述恒等式及极限相除法则,可知{y
n
}收敛,这与假设矛盾.若[*]=0,且{y
n
}发散,则{x
n
y
n
}可能收敛,也可能发散,如: ①x
n
=[*],y
n
=n,则x
n
y
n
=1,于是{x
n
y
n
}收敛. ②x
n
=[*],y
n
=(一1)
n
n,则x
n
y
n
=(一1)
n
,于是(x
n
y
n
}发散. 现在再就{x
n
}和{y
n
}都发散的情况来分析{x
n
y
n
}的收敛性.有下面的结论:若{x
n
}和{y
n
}都发散,且两者至少有一个是无穷大,则{x
n
y
n
}必发散.这是因为如果{x
n
y
n
}收敛,而{x
n
}为无穷大,从等式y
n
=[*]便得到{y
n
}收敛于零,这与假设矛盾. 若{x
n
}和{y
n
}都不是无穷大,且都发散,则{x
n
y
n
}可能收敛,也可能发散,如: ③x
n
=y
n
=(一1)
n
有x
n
y
n
=1,于是{x
n
y
n
}收敛. ④x
n
=(一1)
n
,y
n
=(一1)
n
,有x
n
y
n
=(一1)
n
一1,于是{x
n
y
n
}发散.
解析
转载请注明原文地址:https://kaotiyun.com/show/uEt4777K
0
考研数学二
相关试题推荐
设函数z=xf(x+y)+yg(x+y),其中f,g具有连续二阶导数,则=________.
设fn(x)=x+x2+…+xn(n≥2).(1)证明:方程fn(x)=1有唯一的正根xn;(2)求
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y″+a1(x)y′+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
求曲线y=3-|x2-1|与x轴围成的封闭区域绕直线y=3旋转一周所得的旋转体的体积.
设0≤a<(-1)nan2中,哪个级数一定收敛?
甲、乙两船驶向不能同时停靠两条船的码头,它们一天到达时间是等可能的,如果甲停靠,则停靠的时间为1小时,若乙停靠。则停靠的时间为2小时,求它们不需要等候的概率.
设函数y=y(x)由方程2y3-2y2+2xy-x2=1所确定,试求y=y(x)的驻点,并判定它是否为极值点.
当x∈[0,1]时,f"(x)>0,则f’(0),f’(1),f(1)-f(0)的大小次序为().
求下列微分方程的通解。sec2xtanydx+sec2ytanxdy=0
下列数列发散的是[].
随机试题
Thepolicemankepthiseyes_________onthescreenofthecomputertoidentifythecriminal’sfootprints.
流行性脑脊髓膜炎典型的病理变化是
某常规投资方案,FNPV(i1=14%)=160,FNPV(i2=16%)=-90,则FIRR的取值范围为()。
个人独资企业、合伙企业的纳税人包括( )。
需要是个性积极性的源泉。需要分______需要和______需要两种。
事物的质变和量变是相互转化的。()
某公司欲考察广告的类型(报纸广告、电视广告和网络广告)对其产品销售量的影响。为了保证研究结果的代表性,在不同规模的城市中分别抽取1000名被试进行调研。该研究中的城市规模属于
TheflatofferedinadD______.
(2014年真题)2003年5月,某省甲种子公司与乙种子公司签订合同,约定由甲公司为乙公司代为培育玉米种子。因玉米种子的市场价格上涨,甲公司不愿按原合同价履约。2004年初,乙公司将甲公司诉至A市中级人民法院。在诉讼过程中,两公司因赔偿价格的标准
Jameisunhappybecauseeveryonewenttothedance______her.
最新回复
(
0
)