首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
admin
2016-06-25
98
问题
如果数列{x
n
}收敛,{y
n
}发散,那么{x
n
y
n
}是否一定发散?如果{x
n
}和{y
n
}都发散,那么{x
n
y
n
}的敛散性又将如何?
选项
答案
在题设两种情况下,{x
n
y
n
}的收敛性都不能确定.现在先就{x
n
}收敛,{y
n
}发散的情况来分析.利用y
n
=[*](x
n
≠0)这个恒等式,就可得到下述结论:若{x
n
}收敛且不收敛于零,{y
n
}发散,则{x
n
y
n
}必发散.这是因为若{x
n
y
n
}收敛,且{x
n
}收敛而极限不等于零,则从上述恒等式及极限相除法则,可知{y
n
}收敛,这与假设矛盾.若[*]=0,且{y
n
}发散,则{x
n
y
n
}可能收敛,也可能发散,如: ①x
n
=[*],y
n
=n,则x
n
y
n
=1,于是{x
n
y
n
}收敛. ②x
n
=[*],y
n
=(一1)
n
n,则x
n
y
n
=(一1)
n
,于是(x
n
y
n
}发散. 现在再就{x
n
}和{y
n
}都发散的情况来分析{x
n
y
n
}的收敛性.有下面的结论:若{x
n
}和{y
n
}都发散,且两者至少有一个是无穷大,则{x
n
y
n
}必发散.这是因为如果{x
n
y
n
}收敛,而{x
n
}为无穷大,从等式y
n
=[*]便得到{y
n
}收敛于零,这与假设矛盾. 若{x
n
}和{y
n
}都不是无穷大,且都发散,则{x
n
y
n
}可能收敛,也可能发散,如: ③x
n
=y
n
=(一1)
n
有x
n
y
n
=1,于是{x
n
y
n
}收敛. ④x
n
=(一1)
n
,y
n
=(一1)
n
,有x
n
y
n
=(一1)
n
一1,于是{x
n
y
n
}发散.
解析
转载请注明原文地址:https://kaotiyun.com/show/uEt4777K
0
考研数学二
相关试题推荐
求极限:
设函数f(x)满足xf′(x)-2f(x)=-x.且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:(1)曲线y=f(x);(2)曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
差分方程yt+1-2yt=3×2t的通解为y(t)=________.
曲线y=的渐近线的条数为().
设f(x)在x0的某一邻域内存在连续的三阶导数,且f’(x0)=f"(x0)=0而f"’(x0)≠0,试证(x0,f(x0))是曲线的拐点,而x0不是f(x)的极值点。
设f(x),ψ(x)在点x=0的某邻域内连续,且当x→0时,f(x)是ψ(x)的高阶无穷小,则当x→0时,∫0xf(t)sintdt是∫0xtψ(t)dt的________。
已知抛物线y=px2+qx(其中p0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.求出此最大值。
差分方程yt+1-2yt=3t+1的通解为________.
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
设Tm(x)=cos(marccosx),m=0,1,2,…,则(1一x2)Tm’’(x)一XTm’m(x)+m2Tm(x)=___________
随机试题
现代新闻媒介最重要的经营活动是【】
社会主义道德
A.三仁汤B.白虎加桂枝汤C.羌活胜湿汤D.加味二妙散四肢关节疼痛,局部灼热红肿,伴发热恶风,烦闷口渴,舌苔黄腻,脉滑数者,治疗应选的方剂是
恒重是指()。
A.己烯雌酚B.甲睾酮C.雌二醇D.醋酸甲地孕酮E.达那唑属于雄甾烷类的药物是()。
铁路路基工程中,防护栏杆立柱及扶手的水平推力按()kN/m作用在立柱顶上计算,并应按1kN集中荷载验算。
确定持续时间缩短值的原则是:缩短时间的工作不得变为()工作,其持续时间也不能小于其()。
有一项年金,前3年无现金流入,后5年每年年初流入500万元,假设年利率为10%,其现值为()万元。
我国政治体制改革要坚持社会主义政治制度的特点和优势。社会主义政治制度最鲜明的特点是()。
三权分立制度不适合我国国情。
最新回复
(
0
)