首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[a,b]上二阶可导且f″(x)≥0.证明: (b-a)f[(a+b)/2]≤∫abf(x)dx≥(b-a)/2[f(a)+f(b)].
设f(x)在区间[a,b]上二阶可导且f″(x)≥0.证明: (b-a)f[(a+b)/2]≤∫abf(x)dx≥(b-a)/2[f(a)+f(b)].
admin
2022-08-19
48
问题
设f(x)在区间[a,b]上二阶可导且f″(x)≥0.证明:
(b-a)f[(a+b)/2]≤∫
a
b
f(x)dx≥(b-a)/2[f(a)+f(b)].
选项
答案
由泰勒公式得f(x)=f[(a+b)/2]+f′[(a+b)/2][x-(a+b)/2]+[f″(ξ)/2!][x-(a+b)/2]
2
,其中ω介于x与(a+b)/2之间,因为f″(x)≥0,所以有f(x)≥f[(a+b)/2]+f′[(a+b)/2][x-(a+b)/2],两边积分得∫
a
b
f(x)dx≥(b-a)f[(a+b)/2]. 令φ(x)=(x-a)/2[f(x)+f(a)]-∫
a
x
f(t)dt,且φ(a)=0. φ′(x)=1/2[f(x)+f(a)]+[(x-a)/2]f′(x)-f(x)=[(x-a)/2]f′(x)-1/2[f(x)-f(a)] =1/2(x-a)[f′(x)-f′(η)],其中a≤η≤x, 因为f″(x)≥0,所以f′(x)单调不减,于是φ′(x)≥0(a≤x≤b), [*]得φ(b)≥0,于是∫
a
b
f(x)dx≤[(b-a)/2][f(a)+f(b)], 故(b-a)f[(a+b)/2]≤∫
a
b
f(x)dx≤[(b-a)/2][f(a)+f(b)].
解析
转载请注明原文地址:https://kaotiyun.com/show/rkR4777K
0
考研数学三
相关试题推荐
如图,C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P分别引平行于x轴和y轴的直线,得两块阴影所示区域A,B,它们有相等的面积,设C的方程是y=x2,C1的方程是y=x2,求曲线C2的方程.
求∫0ln5
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2x-y)+g(x,xy),求
设z=yf(x2-y2),其中f可导,证明:
设f(x,y)在点(0,0)的某邻域内连续,且满足,则函数f(x,y)在点(0,0)处().
设且F可微,证明:
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=f(x-t)dt,G(x)=xg(xt)dt,则当x→0时,F(x)是G(x)的().
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)-f(1)].若f(1)=,求:f(x);
设f(x)在[0,+∞)上连续且单调增加,试证对任何b>a>0,都有下面不等式成立:
设f(x)=∫0xecostdt,求∫0πf(x)cosxdx.
随机试题
哪项不是致病因子中致病能力的决定因素
现场急救火焰烧伤时哪些措施错误
X线检查诊断的结果,基本上都是肯定性诊断。
治疗肾虚型牙痛,除取主穴外,还应加()
学生的社会支持网络来自()等系统。
下列有关制定劳动定额的要求,表述不正确的是()。
以下资料,回答81-85题外出人口中大专及以上程度的人口占到了:
2007年3月27日,北京奥组委在首都博物馆隆重发布了2008年奥运会奖牌式样。奖牌背面为()。
A(Suchanextravagance)B(merelytoprovide)comfortispeculiarlyAmericaandC(strikingatoddswith)alltherecentrhetoric
Don’tworry,behappyand,accordingtoanewresearch,youwillalsobehealthy.Itisestimatedthatoverthecourseofon
最新回复
(
0
)