首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
某立体上、下底面平行,且与x轴垂直,若平行于底面的截面面积A(x)是x的不高于二次的多项式,试证该立体体积为V=(B1+4M+B2),其中h为立体的高,B1,B2分别是底面面积,M为中截面面积。
某立体上、下底面平行,且与x轴垂直,若平行于底面的截面面积A(x)是x的不高于二次的多项式,试证该立体体积为V=(B1+4M+B2),其中h为立体的高,B1,B2分别是底面面积,M为中截面面积。
admin
2022-10-08
98
问题
某立体上、下底面平行,且与x轴垂直,若平行于底面的截面面积A(x)是x的不高于二次的多项式,试证该立体体积为V=
(B
1
+4M+B
2
),其中h为立体的高,B
1
,B
2
分别是底面面积,M为中截面面积。
选项
答案
设x处的截面面积为A(x)=a
0
x
2
+a
1
x+a
2
由B
1
=A(0),B
2
=A(h),M=[*]得 a
2
=B
1
,a
1
=(4M-3B
1
-B
2
)/h,a
0
=(2B
1
+2B
2
-4M)/h
2
V=∫
0
h
(a
0
x
2
+a
1
x+a
2
)dx=[*] =[*](B
1
+4M+B
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/0YR4777K
0
考研数学三
相关试题推荐
2设则
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f′(x)>0,如果存在,证明:存在ξ∈(a,b),使得
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的
设常数λ>0,且收敛,则
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A及其中E为3阶单位矩阵.
设函数y=y(x)是由方程xy+ey=x+1确定的隐函数,求
设y=f(x)有二阶连续导数,且满足xy"+3xy′2=1-e-x.若f(x)在x=c(c≠0)处取得极值,证明f(c)是极小值.
曲线y=ex与该曲线经过原点的切线及y轴所围成的平面图形的面积为()
(I)设f(x)是连续函数,并满足又F(x)是f(x)的原函数,且F(0)=0,则F(x)=__________;(Ⅱ)若函数f(x)连续并满足则f(x)=__________.
随机试题
交换二次积分的积分次序=__________.
A和B都是某服装外贸公司的高级业务员。A年富力强,豁达开朗,口头禅是“鄙人有家有业,不愁吃不愁穿,只求有朝一日能实现儿时的梦想,独自驱车横穿撒哈拉沙漠,与非洲土著居民围着篝火唱歌跳舞”。B则精力充沛,办事风风火火,喜欢对人指手画脚.发号施令,一直渴望有朝一
2015年1月2日,甲公司将持有的乙公司发行的10年期公司债券出售给丙公司,经协商出售价格为305万元,2014年12月31日该债券公允价值为310万元。该债券于2014年1月1日发行,甲公司持有该债券时已将其分类为可供出售金融资产,面值为300万元,年利
下列自然人中,不能成为房屋租赁主体的是()。
教师在求知和传授知识、学问的过程中要做到严密谨慎、严格细致。这就要求教师必须()。
艺术构思的心理机制不包括()。
加强党的执政能力建设,必须()。
NetPowerByHaperMorrisNetworkingisapowerfulwayofbuildingprofessionalrelationshipsandgeneratingnewbusinessopport
Anyworkperformedbythebody,nomatterhowsmalltheamount,______energy,whetheroneisatworkorasleep.
It’sTimetoPayAttentiontoSleep,theNewHealthFrontier[A]Yourdoctorcouldsoonbeprescribingcrucialsleepastreatment
最新回复
(
0
)