首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3 求矩阵A的全部特征值。
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3 求矩阵A的全部特征值。
admin
2021-11-25
46
问题
设A为三阶矩阵,ξ
1
,ξ
2
,ξ
3
是三维线性无关的列向量,且
Aξ
1
=-ξ
1
+2ξ
2
+2ξ
3
,Aξ
2
=2ξ
1
-ξ
2
-2ξ
3
,Aξ
3
=2ξ
1
-2ξ
2
-ξ
3
求矩阵A的全部特征值。
选项
答案
A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)[*],因为ξ
1
,ξ
2
,ξ
3
线性无关,所以(ξ
1
,ξ
2
,ξ
3
)可逆,故A~[*]=B 由|λE-A|=|λE-B|=(λ+5)(λ-1)
2
=0,得A的特征值为-5,1,1
解析
转载请注明原文地址:https://kaotiyun.com/show/uiy4777K
0
考研数学二
相关试题推荐
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是()。
设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=0与ABX=0同解的充分条件是()。
设a1,a2,...an为n个n维线性无关的向量,A是n阶矩阵,证明:Aa1,Aa2,...Aan线性无关的充分必要条件是A可逆。
设向量组(I)a1,a2,a3;(II)a1,a2,a3,a4;(III)a1,a2,a3,a5,若向量组(I)与向量组(II)的秩为3,而向量组(III)的秩为4.证明:向量组a1,a2,a3,a5-a4的秩为4.
向量组a1,a2,...am线性无关的充分必要条件是()。
若A可逆且A~B,证明:A*~B*.
设的一个特征值为λ1=2,其对应的特征向量为ξ1=.求常数a,b,c.
设A为m阶正定矩阵,B为m×n阶实矩阵,证明:BTAB正定的充分必要条件是r(B)=n.
两个4阶矩阵满足A2=B2,则
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
随机试题
种族的a.r_____
A.细胞色素a3B.细胞色素b560C.细胞色素p450D.细胞色素c1在线粒体中电子传递给氧的是
感染的含义是
刘先生,30岁。因鼻部疖挤压后出现寒战、高热、头痛,眼部周围组织红肿、疼痛,应考虑并发
单位工程竣工结算是指施工单位在完成单位工程任务后,按照合同规定,在原施工图预算的基础上根据实际发生编制调整预算,向建设单位办理最后的工程价款结算。下列有关工程竣工结算的主要作用有误的是()。
在制定材料消耗定额时,可以用来确定材料损耗率的方法是()。
使生产者与生产资料相分离,将货币资本迅速集中于少数人手中的历史过程就是()
设f(x,y)=(Ⅰ)求;(Ⅱ)讨论f(x,y)在点(0,0)处的可微性,若可微并求af|(0,0).
Thesearchforthelostshipmustbe_____becauseofpoorweather.
Shoppingforclothesisnotthesameexperienceforamanasitisforawoman.Amangoesshoppingbecauseheneedssomething.
最新回复
(
0
)