首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是( )
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是( )
admin
2020-03-01
76
问题
已知α
1
=(1,1,一1)
T
,α
2
=(1,2,0)
T
是齐次方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是( )
选项
A、(1,一1,3)
T
.
B、(2,1,一3)
T
.
C、(2,2,一5)
T
.
D、(2,一2,6)
T
.
答案
B
解析
如果A选项是Ax=0的解,则D选项必是Ax=0的解.因此选项A、D均不是Ax=0的解.由于α
1
,α
2
是Ax=0的基础解系,那么α
1
,α
2
可表示Ax=0的任何一个解η,亦即方程组x
1
α
1
,+x
1
α
2
=η必有解,因为
可见第二个方程组无解,即(2,2,一5)
T
不能由α
1
,α
2
线性表示.所以应选B.
转载请注明原文地址:https://kaotiyun.com/show/ujA4777K
0
考研数学二
相关试题推荐
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示。下列命题正确的是()
(2004年)设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*是A的伴随矩阵,E是单位矩阵,则|B|=_______.
(98年)
(2008年试题,23)设A为三阶矩阵α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求-1PAP.
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
已知A是四阶矩阵,A*是A的伴随矩阵,若A*的特征值是1,一1,2,4,那么不可逆矩阵是()
设当χ→0时,(χ-sinχ)ln(1+χ)是比-1高阶的无穷小,而-1是比(1-cos2t)dt高阶的无穷小,则n为().
设矩阵Am×n的秩r(A)=r([A|b])=m<n,则下列说法错误的是()
设则(A-1)*=_________.
设A,B均是n阶非零矩阵,已知A2=A,B2=B,且AB=BA=O,则下列3个说法:①0未必是A和B的特征值;②1必是A和B的特征值;③若α是A的属于特征值1的特征向量,则α必是B的属于特征值0的特征向量.正确说法的
随机试题
针对专利申请文件的提交,国务院专利行政部门不予受理的情形是()。
对信息和讯息的界定不正确的是
百部的主要功效是
治疗作用初步评价阶段是新药的国务院药监管理部门批准给药品注册申请人特定药品的标准,生产该药的药品生产企业必须执行的是
请简要论述“十恶”制度。
下列属于委托代理终止情形的是()。
小陈是一名银行业从业人员,赵先生是他多年的客户。赵先生生活富裕,在中国大陆经营一家小型企业,同时在香港、台湾和北美都有收入来源。小陈在自己没有取得会计资格的前提下,主动为赵先生提供跨国避税和企业会计方面的服务。请问,小陈的做法违反了()原则。
下列项目中,免征契税的是()。
下列有关我国印花税的说法,正确的是()。
最初的ARPANet主要研究内容是______、网络通信协议、网络通信与系统操作软件。
最新回复
(
0
)