首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx=( ).
设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx=( ).
admin
2019-03-14
42
问题
设函数f(x,y)连续,则∫
1
2
dx∫
x
2
f(x,y)dy+∫
1
2
dy∫
y
4-y
f(x,y)dx=( ).
选项
A、∫
1
2
dx∫
1
4-x
f(x,y)dy.
B、∫
1
2
dx∫
x
4-x
f(x,y)dy
C、∫
1
2
dx∫
1
4-y
f(x,y)dy.
D、∫
1
2
dx∫
y
y
f(x,y)dy
答案
C
解析
∫
1
2
dx∫
x
2
f(x,y)dy+∫
1
2
dy∫
y
4-y
f(x,y)dx的积分区域为两部分(如图4—8):D
1
={(x,y)|1≤x≤2,x≤y≤2};D
2
={(x,y)|1≤y≤2,y≤x≤4一y},将其写成一个积分区域为D={(x,y)|1≤y≤2,1≤x≤4一y}.故二重积分可以表示为∫
1
2
dy∫
1
4-y
f(x,y)dx,故答案为C.
转载请注明原文地址:https://kaotiyun.com/show/QOj4777K
0
考研数学二
相关试题推荐
求下列方程的通解:(Ⅰ)(χ-2)dy=[y+2(χ-2)3]dχ;(Ⅱ)y2dχ=(χ+y2)dy;(Ⅲ)(3y-7χ)dχ+(7y-3χ)dy=0.
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+b)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)B不能由α1,α2,α3,α4线性表示?(Ⅱ)B能用α1,α2,α3,α4线性表
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
设f(χ,y)在点(a,b)的某邻域具有二阶连续偏导数,且f′y(a,b)≠0,证明由方程f(χ,y)=0在χ=a的某邻域所确定的隐函数y=φ(χ)在χ=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f′χ(a,b)=0,且当r(a,b)>0时,
已知以2π为周期的周期函数f(χ)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(χ)=(sinχ-1)2)f(χ),证明使得F〞(χ0)=0.
用变量代换x=cost(0<t<π)化简微分方程(1一x2)y’’一xy’+y=0,并求其满足y|x=0=1,y’|x=0=2的特解。
设A,B是n阶矩阵,证明:AB和BA的主对角元的和相等.(方阵主对角元的和称为方阵的迹,记成trA,即
已知三阶方阵A的行列式|A|=2,矩阵B=,其中Aij为A的(i,j)元素的代数余子式(i、j=1,2,3),求AB.
求微分方程y"(x+y’2)=y’满足初始条件y(1)=y’(1)=1的特解.
A是n阶方阵,A*是A的伴随矩阵,则|A*|=()
随机试题
目前,个人计算机使用的电子元器件主要是__________。
具有温肺化饮作用的药物是()(1997年第139题)
刺激交感神经,不能引起
患者吴某,男性,47岁。农民,既往曾有蛔虫病史,目前症见周身肌肤色黄,两目黄染,伴有胁痛,时发时止,倦怠乏力,大便溏薄,舌淡,苔白,脉濡细。治疗宜选用
某公司从银行取得贷款30万元,年利率为6%,贷款期限为3年,到第3年年末一次偿清,公司应付银行本利和为()万元。
进入工作稳定期以后,投资应偏向风险高、收益高的产品。()
UntilItookDrOffutt’sclassinDeMathaHighschool,Iwasanunderachievingstudent,butIleftthatclass【C1】______neverto
专利权终止的原因有()。
はい、かしこまりました。このような故障は品質に問題がない()、弊社は責任をもって修理いたします。
【B1】【B7】
最新回复
(
0
)