首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x0∈(a,b)一定存在x1,x2∈(a,b)使得f(x1)>f(x0)>f(x2).
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x0∈(a,b)一定存在x1,x2∈(a,b)使得f(x1)>f(x0)>f(x2).
admin
2017-10-23
52
问题
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x
0
∈(a,b)一定存在x
1
,x
2
∈(a,b)使得f(x
1
)>f(x
0
)>f(x
2
).
选项
答案
假设结论不正确,则存在x
0
∈(a,b)使得对任何x∈(a,b),要么f(x)≥f(x
0
)(这时f(x
0
)为极小值);要么f(x)≤f(x
0
)(这时f(x
0
)为极大值).因此若结论不正确,则f(x)必在(a,b)内某点x
0
处取得极值.由于f(x)在(a,b)内处处可导,由费马定理可知f’(x
0
)=0,但是对一切x∈(a,b)有f’(x)≠0,这就产生了矛盾.因此结论正确.
解析
f(x
1
)>f(x
0
)>f(x
2
)的含义是既有函数值小于f(x
0
)的点又有函数值大于f(x
0
)的点.若这个结论不正确,则在(a,b)内的函数值要么处处不小于f(x
0
),要么处处不大于f(x
0
),这时f(x
0
)就是极值.由费马定理得出f’(x
0
)=0,此与条件矛盾.
转载请注明原文地址:https://kaotiyun.com/show/usX4777K
0
考研数学三
相关试题推荐
设f(x,y)在点(0,0)的邻域内连续,=__________
求幂级数的收敛区间.
设连续型随机变量X的分布函数为(1)求常数A,B;(2)求X的密度函数f(x);(3)求
设袋中有5个球,其中3个新球,2个旧球,从中任取3个球,用X表示3个球中的新球个数,求X的分布律与分布函数.
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
一电路使用某种电阻一只,另外35只备用,若一只损坏,立即使用另一只更换,直到用完所有备用电阻为止.设电阻使用寿命服从参数为λ=0.01的指数分布,用X表示36只电阻的使用总寿命,用中心极限定理估计P(X>4200)(=0.9772).
变换下列二次积分的积分次序:
设函数f(x)在(0,+∞)上可导,f(0)=0,且其反函数为g(x).若
随机试题
山药的归经是()(2006年第126题)
《关于全面加强新时代大中小学劳动教育的意见》指出:“注重围绕卫生、劳动习惯养成,让学生做好个人清洁卫生,主动分担家务,适当参加校内外公益劳动,学会与他人合作劳动,体会到劳动光荣。”这一内容要求针对的学段是()
A、黄芩苷B、黄芩素C、槲皮素D、槲皮素-7-O-葡萄糖苷E、矢车菊素不易溶于水易溶于NaHCO3的苷是
信息管理的工作流程包括( )。
不能行使票据追索权的票据当事人是()。
郭鹏飞先生现在是典型的三代同堂家庭,由于郭先生夫妇收入水平较低,面对需要扶养成人的儿子和需要好好赡养的双亲,郭先生一家理财压力较大,特因此向理财师征求意见。经过初步沟通面谈后,理财师获得了以下家庭、职业与财务信息:一、案例成员六、假设条件1.预期未
下列不属于企业债券的发行主体的是()。
某高校教师李某于2015年11月购买面积为80平方米普通住房一套,成交价92万元,该住房为家庭唯一住房。当地契税税率为3%。李某应缴纳的契税为()万元。
()是陈鹤琴创建五指活动课程的基本原则。
AcademyAwardnominees(被提名的人)whogohomeempty-handedmaynothaveashinyOscarto【B1】______,buttheymayturnouttobetheb
最新回复
(
0
)