首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设αi=(αi1,αi2……αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2……αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量,试判断向量组α1,α2
设αi=(αi1,αi2……αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2……αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量,试判断向量组α1,α2
admin
2018-04-18
70
问题
设α
i
=(α
i1
,α
i2
……α
in
)
T
(i=1,2,…,r,r<n)是n维实向量,且α
1
,α
2
……α
r
线性无关,已知β=(b
1
,b
2
,…,b
n
)
T
是线性方程组
的非零解向量,试判断向量组α
1
,α
2
选项
答案
设有一组数x
1
,x
2
,……x
x+1
,使得x
1
α
1
+x
2
α
2
+…+xα+x
r
α
r
+x
r+1
β=0, (*) 用β
T
左乘(*)式两端,由于β是方程组的非零解,所以β
T
α
i
=0(i=1,2,…,r),从而得x
r+1
β
T
β=0,而β≠0,故β
T
β≠0,从而x
r+1
=0,代入(*)式并注意到向量组α
1
,α
2
……α
r
线性无关,可得x
1
=0,x
2
=0,…,x
r
=0,所以向量组α
1
,α
2
……α
r
,β线性无关.
解析
本题是向量与方程组的综合题.注意β=(b
1
,b
2
,…,b
n
)
T
是线性方程组的解,则有
即β
T
α
i
=0(i=1,2,…,r).
转载请注明原文地址:https://kaotiyun.com/show/utk4777K
0
考研数学二
相关试题推荐
设函数z=z(x,y)由方程F(x-ax,y-bx)=0所给出,其中F(u,v)任意可微,则
函数y=x+2cosx在[0,π/2]上的最大值为________.
曲线渐近线的条数为().
考察一元函数f(x)的下列四条性质:①f(x)在区问[a,b]上连续②f(x)在区间[a,b]上可积③f(x)在区间[a,b]上存在原函数④f(x)在区间[a,b]上可导若用P→Q表示可由性质P推出性质Q,则有().
设函数f(x)在(-∞,+∞)内有定义,xo≠0是函数f(x)的极大值点,则().
设A,B均为三阶矩阵,E是三阶单位矩阵.已知AB=2A+B.B=则(A-E)-1=_______.
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
(2012试题,三)(1)证明方程xn+xn-1+…+x=1(n为大于1的整数),在区间内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
(2012年试题,二)设。其中函数f(u)可微,则
设f(x)=,求f(x)的间断点并判断其类型.
随机试题
人民法院应当在立案之日起三个月内作出第一审判决,有特殊情况需要延长的,由其上级人民法院批准。()
电动潜油泵井欠载保护电流一般为正常工作电流的()。
人力资源管理者应该具备哪些能力?
Two-LayerSystemPersonalityistoalargeextentinherent.A-typeparentsusuallybringaboutA-type【W1】______.Buttheenvir
可见于无器质性心脏病者的心律失常包括
鉴别水肿型和出血坏死型胰腺炎最有价值的是
【2007年第13题】如图3-231所示两个矩形截面梁,在相同的竖向剪力作用下,两个截面的平均剪应力关系为:
现代化的城市燃气输配系统是复杂的综合设施,通常由下列()部分构成。
《企业会计制度》负债类科目(含二级科目)包括( )。
世界上最有影响,使用最广的股阶指数是()。
最新回复
(
0
)