首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设αi=(αi1,αi2……αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2……αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量,试判断向量组α1,α2
设αi=(αi1,αi2……αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2……αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量,试判断向量组α1,α2
admin
2018-04-18
77
问题
设α
i
=(α
i1
,α
i2
……α
in
)
T
(i=1,2,…,r,r<n)是n维实向量,且α
1
,α
2
……α
r
线性无关,已知β=(b
1
,b
2
,…,b
n
)
T
是线性方程组
的非零解向量,试判断向量组α
1
,α
2
选项
答案
设有一组数x
1
,x
2
,……x
x+1
,使得x
1
α
1
+x
2
α
2
+…+xα+x
r
α
r
+x
r+1
β=0, (*) 用β
T
左乘(*)式两端,由于β是方程组的非零解,所以β
T
α
i
=0(i=1,2,…,r),从而得x
r+1
β
T
β=0,而β≠0,故β
T
β≠0,从而x
r+1
=0,代入(*)式并注意到向量组α
1
,α
2
……α
r
线性无关,可得x
1
=0,x
2
=0,…,x
r
=0,所以向量组α
1
,α
2
……α
r
,β线性无关.
解析
本题是向量与方程组的综合题.注意β=(b
1
,b
2
,…,b
n
)
T
是线性方程组的解,则有
即β
T
α
i
=0(i=1,2,…,r).
转载请注明原文地址:https://kaotiyun.com/show/utk4777K
0
考研数学二
相关试题推荐
设函数z=z(x,y)由方程F(x-ax,y-bx)=0所给出,其中F(u,v)任意可微,则
设A是n阶方阵,线性方程组AX=0有非零解,则线性非齐次方程组ATX=b对任意b=(b1,b2,…,bn)T().
当x→0时,下列四个无穷小量中,哪一个是比其他三个更高阶的无穷小量?().
下列各式中正确的是().
设y=ex为微分方程xyˊ+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
设曲线L位于xOy平面的第一象限内,L上任意_一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(3/2,3/2),求L的方程.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且fˊ+(a)>0,证明:存在ξ∈(a,b),使得f〞(a)<0.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠D,使得AB=D,则().
设f(x)在区间[0,1]上可微,且满足条件.试证存在ξ∈(0,1),使f(ξ)+ξf’(ξ)0.
设,试讨论f(x)在x=0处的连续性和可导性.
随机试题
A、胸腺瘤B、皮样囊肿C、神经源性肿瘤D、淋巴瘤E、甲状腺肿前上纵隔_______。
以茯苓、半夏、陈皮、山楂、神曲、炒麦芽为主组合成方,治疗腹泻,属于哪种治法
下列关于“战时”理解不正确的是:()
水银体温计
下列各项中,适合采用计划成本分配法分配辅助生产费用的是()。
根据表格回答问题。国库券发行之后,可以在证券交易所上市交易(买卖)。请根据下表提供的信息回答下述问题(计算时交易佣金不计。另,根据我国银行系统计息方法,不计复息,即每一年所得利息不作为第二年计息的本金)。如果2003年3月1日买入2003年
某网球店2006年和2007年的长期负债分别为280万元和310万元,2007年利息费用为340000元。该公司2006年普通股为820000元,股本溢价为680万元,2007年这两项分别为855000元和760万元,2007年支付现金股利600000元。
基于经济利己主义的环保制度不可取——2010年英译汉及详解Onebasicweaknessinaconservationsystembasedwhollyoneconomicmotivesisthatmostmembers
使用VC++2010打开考生文件夹下prog1中的解决方案。此解决方案的项目中包含一个源程序文件prog1.c。在此程序中,编写函数fun,其功能是:将s所指字符串中ASCII码值为奇数的字符删除,剩余字符形成的新串放在t所指数组中。例如,若8所指字符串
WhichofthefollowingthingsistheoneGeorgedidfirst?
最新回复
(
0
)