首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内可微,证明:在f(x)的任何两个零点之间必有f(x)+fˊ(x)的一个零点.
设f(x)在(-∞,+∞)内可微,证明:在f(x)的任何两个零点之间必有f(x)+fˊ(x)的一个零点.
admin
2013-03-15
74
问题
设f(x)在(-∞,+∞)内可微,证明:在f(x)的任何两个零点之间必有f(x)+fˊ(x)的一个零点.
选项
答案
证:作辅助函数F(x)=f(x)e
x
显然F(x)在[α,β]上连续,且在(α,β)内可微,其中α,β为f(x)的任意两个零点,即f(α)=f(β)=0,且α<β F(α)=f(a)e
a
=0=f(β)e
β
=F(β) 可知F(x)在[α,β]上满足罗尔定理的条件,于是至少存在一点ε∈(α,β),使Fˊ(ε)=0.即e
ε
f(ε)+e
ε
fˊ(ε)=0,亦即f(ε)+fˊ(ε)=0.命题得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/V7C4777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位矩阵,若A有特征值λ,则(A*)2+E必有特征值_____.
设向量组α1,α2,…,αm中任一向量αi不是它前面i一1个向量的线性组合,且α1≠0,试证:向量组α1,α2,…,αm的秩为m.
求下列向量组的秩:α1=(6,4,1,一1,2),α2=(1,0,2,3,一4),α3=(1,4,一9,一16,22),α4=(7,1,0,一1,3).
设n维向量组α1,α2,…,αn线性无关,令试证β1,β2,…,βn线性无关的充分必要条件为
求极限
设函数f(x)在[e,+∞)上连续,且反常积分收敛,若f(x)=,则f(x)=______________.
设函数z=f(x,y)满足=x+y,且f(x,0)=x,f(0,y)=y2,则=____________.
设3阶矩阵A,B满足关系式AB=A—B且A有三个不同的特征值.证明:(Ⅰ)AB=BA:(Ⅱ)存在可逆阵P,使得P-1AP,P-1BP同时为对角阵.
设有一个边长为a的质地均匀的正立方体Γ沉入一个体积很大的水池,假设水池的水深为a,并且立方体Γ的上表面恰好与水面重合,又设水的密度为ρ,立方体Γ的密度为kp,其中k>1为常数,重力加速度为g.试利用定积分方法计算将立方体Γ提升出水面需要做的功.
设某种商品的单价为p时,售出的商品数量Q可以表示成其中a,b,c均为正数,且a>bc.(I)求p在何范围变化时,使相应销售额增加或减少?(Ⅱ)要使销售额最大,商品单价p应取何值?最大销售额是多少?
随机试题
根据《水电水利工程模板施工规范》(DL/T51l0—2000),下列关于模板施工的说法正确的是().
关于极低出生体重儿的叙述正确的是
有关滤线栅的叙述,错误的是
手太阳小肠经的络穴是()
依据《增值税暂行条例》的规定,下列属于须开具增值税专用发票的情形是:()
下列有关房屋权属登记的表述中,正确的是()。
Honesty,mymumalwaysusedtotellme,isthebestpolicy.Ofcourse,thisdidn’tincludeherwhenshetoldmethatifIdidn’
下列哪些说法是正确的?()
2014年3月22日至4月1日,国家主席习近平对荷兰、法国、德国、比利时进行国事访问,并访问联合国教科文组织总部、欧盟总部。此访是习近平主席作为国家元首首次欧洲之行,习近平主席同四国和欧盟领导人多次、长时间深入交谈,同往访国各界广泛接触,叙友谊、话交流、谈
Itwasimpossibletoavoid(be)______affectedbyhiswords.
最新回复
(
0
)