首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内可微,证明:在f(x)的任何两个零点之间必有f(x)+fˊ(x)的一个零点.
设f(x)在(-∞,+∞)内可微,证明:在f(x)的任何两个零点之间必有f(x)+fˊ(x)的一个零点.
admin
2013-03-15
109
问题
设f(x)在(-∞,+∞)内可微,证明:在f(x)的任何两个零点之间必有f(x)+fˊ(x)的一个零点.
选项
答案
证:作辅助函数F(x)=f(x)e
x
显然F(x)在[α,β]上连续,且在(α,β)内可微,其中α,β为f(x)的任意两个零点,即f(α)=f(β)=0,且α<β F(α)=f(a)e
a
=0=f(β)e
β
=F(β) 可知F(x)在[α,β]上满足罗尔定理的条件,于是至少存在一点ε∈(α,β),使Fˊ(ε)=0.即e
ε
f(ε)+e
ε
fˊ(ε)=0,亦即f(ε)+fˊ(ε)=0.命题得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/V7C4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,…,αm中任一向量αi不是它前面i一1个向量的线性组合,且α1≠0,试证:向量组α1,α2,…,αm的秩为m.
设B是由矩阵A经初等行变换得到的矩阵.证明:A与B的列向量有完全相同的线性关系,即k1α1+k2α2+…+kmαm=0当且仅当有k1β1+k2β2+…+kmβm=0,其中α1,α2,…,αm与β1,β2,…,βm分别为A和B的列向量.
设α1=(1,0,-1,0)T,α2=(0,1,0,a)T,α3=(1,1,a,-1)T,记A=(α1,α2,α3).(Ⅰ)解齐次线性方程组(ATA)x=0;(Ⅱ)当a,b为何值时,向量组β1=(1,1,b,a)T,β2=(1,2,-1,2a)T可由向
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)>0,f(0)<0,证明:对任意常数λ,存在ξ∈(0,1),使得.
设函数f(x)在[e,+∞)上连续,且反常积分收敛,若f(x)=,则f(x)=______________.
求在区间(-∞,+∞)内的连续函数f(x),使其满足方程
设随机变量X和Y的相关系数为,且E(X)=0,E(Y)=1,E(X2)=4,E(Y2)=10,则E[(X+Y)2]=_________。
设随机变量X,Y相互独立,X在区间(0,2)上服从均匀分布,Y服从参数为1的指数分布,则概率P{X+Y>1}=().
设某种商品的单价为p时,售出的商品数量Q可以表示成其中a,b,c均为正数,且a>bc.(I)求p在何范围变化时,使相应销售额增加或减少?(Ⅱ)要使销售额最大,商品单价p应取何值?最大销售额是多少?
随机试题
Youreallyhavetogetveryoldbeforeyourealizeyou’reold.I’minmymiddlefiftiesandIdon’tfeel【C1】______yet.However,
下列哪一选项不属于社会主义法治理念的理论渊源?
某石方路堑开挖的大量石方需调运到1000m外的路堤处,宜选择的运输机械是()。
香港联交所《创业板上市规则》规定,如属新申请人,其申报会计师最近期报告的财政期间,不得早于上市文件刊发日期前6个月。( )
游览途中出现游客走失,一般情况下()不参与寻找。
下列属于非正式组织基本存在形式的是()。
适合自由回忆学习研究范型的例子是()。
古罗马的西塞罗曾说:“优雅和美不可能与健康分开。”意大利文艺复兴时代的人道主义者洛伦佐.巴拉强调说,健康是一种宝贵的品质,是“肉体的天赋”,是大自然的恩赐。他写道:“很多健康的人并不美,但是没有一个美的人是不健康的。”以下各项都可以从洛伦佐?巴拉
Thegovernmentistobanpaymentstowitnessesbynewspapersseekingtobuyuppeopleinvolvedinprominentcases【C1】______thet
AmericanIndianlanguages,whichdifferwidely,tendedtogroupmanyunitsofmeaningintomultisyllabicwords.
最新回复
(
0
)