首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (Ⅰ)求满足Aξ2=ξ1,A2ξ2=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设 (Ⅰ)求满足Aξ2=ξ1,A2ξ2=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2017-04-24
59
问题
设
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
2
=ξ
1
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中的任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(Ⅰ)设ξ
2
=(x
1
,x
2
,x
3
)
T
,解方程组Aξ
2
=ξ
1
,由 [*] 得x
1
=一x
2
,x
3
=1一2x
2
(x
2
任意).令自由未知量x
2
=一c
1
,则得 ξ
2
=[*],其中c
1
为任意常数. 设ξ
3
= (y
1
,y
2
,y
3
)
T
,解方程组A
2
ξ
3
=ξ
1
,由 [A
2
,ξ
1
]=[*] 得y
2
=[*]一 y
2
(y
2
,y
3
任意).令自由未知量y
2
=c
2
,y
3
=c
3
,则得 [*] 其中c
2
,c
3
为任意常数. (Ⅱ)3个3维向量ξ
1
,ξ
2
,ξ
3
线性无关的充要条件是3阶行列式D=|ξ
1
,ξ
2
,ξ
3
|≠0.而 [*] 所以ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/uyt4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f"(x)|≤M,证明:|f’(x)|≤M/2.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ);存在η∈(a,b),使得ηf’(η)+f(η)=0.
设非负函数y=y(x)(x≥0)满足微分方程xy"-y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0围成平面区域的面积为2,求D绕y轴旋转所得旋转体体积。
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解。
求下列微分方程的通解。
y"-4y=e2x的通解为________。
已知f2(x)=,且f(x)为可导正值函数,则f(x)=________。
在一条公路的一侧有某单位的A、B两个加工点,A到公路的距离.AC为1km,B到公路的距离BD为1.5km,CD长为3km(如图4—2).该单位欲在公路旁边修建一个堆货场M,并从A、B两个大队各修一条直线道路通往堆货场M,欲使A和B到M的道路总长最短,堆货场
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
随机试题
现场干预试验必须具备哪些基本要素
蟾酥的性状特征有()
控释膜保护膜
“应收票据”项目应根据“应收票据”科目的期末余额填列。()
以下不属于个别督导的技巧是()。
试论缔约过失责任。
吉尼斯世界纪录和趣味有关,也和无聊有关。27个法国人用牙签搭建了微型的埃菲尔铁塔,一个美国人收集了600余双匡威运动鞋,一个古巴人做出了世界上最长的雪茄。吉尼斯就是无聊大观园,没有想不到,也不存在做不到。但太无聊的纪录连吉尼斯也会望而生畏,有人注册了互联网
材料1建设社会主义现代化国家、实现中华民族伟大复兴,是我们党孜孜以求的宏伟目标。自成立以来,我们党就团结带领人民为此进行不懈奋斗。随着改革开放逐步深化,我们党对制度建设的认识越来越深入。1980年,邓小平同志在总结“文化大革命”的教训时就指出:“
办事员小李需要整理一份有关高新技术企业的政策文件呈送给总经理查阅。参照“示例1.jpg”“示例2.jpg”,利用考生文件夹下提供的相关素材,按下列要求帮助小李完成文档的编排:在标题段落“附件1:国家重点支持的高新技术领域”的下方插入以图标方式显示的文档
【B1】【B12】
最新回复
(
0
)