首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (Ⅰ)求满足Aξ2=ξ1,A2ξ2=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设 (Ⅰ)求满足Aξ2=ξ1,A2ξ2=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2017-04-24
41
问题
设
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
2
=ξ
1
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中的任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(Ⅰ)设ξ
2
=(x
1
,x
2
,x
3
)
T
,解方程组Aξ
2
=ξ
1
,由 [*] 得x
1
=一x
2
,x
3
=1一2x
2
(x
2
任意).令自由未知量x
2
=一c
1
,则得 ξ
2
=[*],其中c
1
为任意常数. 设ξ
3
= (y
1
,y
2
,y
3
)
T
,解方程组A
2
ξ
3
=ξ
1
,由 [A
2
,ξ
1
]=[*] 得y
2
=[*]一 y
2
(y
2
,y
3
任意).令自由未知量y
2
=c
2
,y
3
=c
3
,则得 [*] 其中c
2
,c
3
为任意常数. (Ⅱ)3个3维向量ξ
1
,ξ
2
,ξ
3
线性无关的充要条件是3阶行列式D=|ξ
1
,ξ
2
,ξ
3
|≠0.而 [*] 所以ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/uyt4777K
0
考研数学二
相关试题推荐
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
证明:当0<x<1时e-2x>(1-x)/(1+x).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ);存在η∈(a,b),使得ηf’(η)+f(η)=0.
函数f(x)=x2-3x+4在[1,2]上满足罗尔定理的中值ξ=________.
求微分方程xdy+(x-2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小。
求以y=C1ex+C2e-x-x为通解的微分方程(C1、C2为任意常数)。
下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ε
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
考虑二次型f=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3,问λ取何值时,f为正定二次型.
随机试题
现代社会学通常采用特定的符号图式分析家庭结构,表示【】
胆固醇在体内代谢的主要去路是
药物的各种给药方式,使药物起效由快到慢的顺序是
紫珠的功效是
长上公司与艺海公司在履行合同过程中发生了纠纷。长上公司按照仲裁条款向选定的石家庄市仲裁委员会提交了仲裁申请。下列关于该案仲裁庭的组成的表述哪个是错误的?
对于抵押房屋的补偿、安置说法正确的是()。
LTE中无线接入网的名称是什么?()
国务院某部委出台一部行政规章,规定对某种行政违法行为不仅要处罚该单位,还要给予直接责任人罚款的处罚。但有关规定这一违法行为处罚的行政法规并没有规定对直接责任人给予行政处罚。以下表述错误的是()。
给定材料材料12014年1月15日上午九点,在A村,几个村民抬着装有人民币的大箩筐从村委会出来。随后,工作人员将钱整齐地摆放在院子正前方的办公桌上,垒起了2米多长的“钱墙”,十分霸气。据悉,这些现金大部分是还未拆去塑料膜的崭新人民币,一
将考生文件夹下HWAST文件夹中的文件XIAN.FPT重命名为YANG.FPT。
最新回复
(
0
)