首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为正交矩阵,且|A|=—1,证明:λ=—1是A的特征值。
设A为正交矩阵,且|A|=—1,证明:λ=—1是A的特征值。
admin
2017-01-21
66
问题
设A为正交矩阵,且|A|=—1,证明:λ=—1是A的特征值。
选项
答案
要证λ=—1是A的特征值,需证|A +E|=0。因为|A +E|=|A +A
T
A|=|(E +A
T
)A|=|E +A
T
||A|=一|A +E|,所以|A+E|=0,故λ=—1是A的特征值。
解析
转载请注明原文地址:https://kaotiyun.com/show/v9H4777K
0
考研数学三
相关试题推荐
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
根据题意可知方程组(Ⅱ)中方程组个数<未知数个数,从而(Ⅱ)必有无穷[*]
设n元线性方程组Ax=b,其中,x=(x1,…,xn)T,b=(1,0,…,0)T.(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
设A为n阶实对称矩阵,秩﹙A﹚=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)的
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
随机试题
布莱克分类窝洞考虑的充填材料是
A.清热泻火、除烦止渴B.清热泻火、滋阴润燥C.清热泻火、泻火解毒D.清热泻火、退虚热E.清热泻火、泻下除积
交通运输主管部门负责危险化学品道路运输、水路运输的许可以及运输工具的安全管理,对危险化学品水路运输安全实施监督,负责危险化学品道路运输企业、水路运输企业的()人员的资格认定。
《国务院关于加强和改进消防工作的意见》中指出,作为消防安全重点单位的施工单位,对本单位进行消防安全检查评估的时间间隔为()。
()是指客户将委托要求通过电话报给证券经纪商,证券经纪商根据电话委托内容向证券交易所交易系统申报。
根据以下情境材料,回答问题。假如你是A省B市公安局信访处的一名工作人员,某日一批群众前来上访,为完成工作任务,保障群众利益,领导要求你认真负责此事,面对各种难题,你需要准确解决。有群众反映B市公安局信访渠道不畅,局领导要求你尽快改变这一现状,请问下列
越来越多的孩子,甚至是低龄儿童,都学会了玩电子产品。数据表明,手机、平板电脑等小屏幕的电子产品对孩子视力屈光度的影响远大于电视、投影。孩子使用电子产品大于20分钟以后经常出现揉眼睛的动作,说明眼睛已经很疲劳了。长期下来,近视度数就逐渐加深。尤其在黑暗的地方
《西游记》
HelpWantedAd.Outstandingopportunitywithlocalrealestatecorporation.Requiresstrongbackgroundinrealestate,finan
洋务运动首先兴办的是
最新回复
(
0
)