(Ⅰ)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x);  (Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)·…·un(x),写出f(x)的求导公式.

admin2022-11-28  37

问题 (Ⅰ)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x);
 (Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)·…·un(x),写出f(x)的求导公式.

选项

答案(Ⅰ)[*]  (Ⅱ)由(Ⅰ)可知,连续利用(Ⅰ)的结论,可得  f′(x)=[u1(x)u2(x)·…·un(x)]′  =u′1(x)u2(x)·…·un(x)+u1(x)u′2(x)·…·un(x)+…+u1(x)u2(x)·…·u′n(x).

解析
转载请注明原文地址:https://kaotiyun.com/show/vDgD777K
0

相关试题推荐
最新回复(0)