首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求A的特征值与特征向量;
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求A的特征值与特征向量;
admin
2018-04-12
106
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解。
求A的特征值与特征向量;
选项
答案
因为矩阵A的各行元素之和均为3,所以[*],则由特征值和特征向量的定义知,λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量,对应λ=3的全部特征向量为kα,其中k是不为零的常数。 又由题设知Aα
1
=0,Aα
2
=0,即Aα
1
=0.α
1
,Aα
2
=0.α
2
,而且α
1
,α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量,对应λ=0的全部特征向量为k
1
α
1
+k
2
α
2
,其中k
1
,k
2
为不全为零的常数。
解析
线性方程组Ax=0的解即为特征值0的特征向量,矩阵的各行元素之和为3等价于A(1,1,1)
T
=(3,3,3)
T
=3(1,1,1)
T
,从而得到(1,1,1)
T
是A的特征向量,对应的特征值为3。
转载请注明原文地址:https://kaotiyun.com/show/vDk4777K
0
考研数学二
相关试题推荐
曲线的渐近方程为________.
求微分方程y’=y(1-x)/x的通解。
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设矩阵是矩阵A*的一个特征向量,A是α对应的特征值,其中A*是矩阵A的伴随矩阵.试求a,b和λ的值.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.求a,b的值.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
随机试题
关于物质文化,下列说法正确的有()
午后或入夜低热,伴有五心烦热者,其病机为
A.MaslowB.NANDAC.Majoryc0rdonD.AlfaroE.Holmes功能性健康形态分类的是
依据《行政处罚法》的规定,违法事实确凿并且有法定依据,对企业处以()元以下的罚款,可以当场作出处罚决定。
某新建机场地处丘陵山区,地形比较复杂,最大挖方高度大于12m。土基挖方区以石方为主,土体为非黏性土。施工单位根据工期及工程量编制了施工进度计划,设备需求计划和材料供应计划。问题:场道工程前期技术准备工作有哪些?
如图所示,AE、CD为⊙O的直径,且AE=CD=6.若AD=DB=BE=EC,连接AC、DE、BA、BC.证明:AB⊥CD;
以下重要经济指标,依次反映通货膨胀水平、收入分配差异程度、衡量一个国家或地区富裕程度的指标是()。
某技校在每月首日招收学员,学习时限以月为周期,每月首日为考核日,考核通过即离校。每批学员学习1个月后,在次月初考核通过的比例为10%,而学习2个月后,仍未通过考核的占该批学员的50%,学习3个月后该批学员全部考核通过离校。如果从3月份起,该技校开始招收学员
最早提出建立普遍性国际联盟的是()。
马克思主义认为,世界的真正统一性在于它的()
最新回复
(
0
)