首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。 求曲线x=φ(
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。 求曲线x=φ(
admin
2017-01-13
72
问题
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m
3
/min的速率向容器内注入液体时,液面的面积将以πm
2
/min的速率均匀扩大(假设注入液体前,容器内无液体)。
求曲线x=φ(y)的方程。
选项
答案
液面的高度为y时,液体的体积为 V(t)=π∫
0
-2
φ
2
(u)du,由题设,以3m
3
/min的速率向容器内注入液体,得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vDt4777K
0
考研数学二
相关试题推荐
设f(x)=∫0tanxarctant2dt,g(x)=x-sinx,当x→0时,比较这两个无穷小的关系.
[*]
设函数z=f(x)在点(1,1)处可微,且f(1,1)=1,,ψ(x)=f(x,f(x,x)),求ψ3(x)|x=1。
讨论在(0,0)点的连续性。
设某商品从时刻0到时刻t的销售量为x(t)=kt,t∈[0,T](K>0),欲在T时将数量为A的该商品售完,试求:在时间段[0,T]上的平均剩余量。
设D1是由抛物线y=2x2和直线x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=0所围成的平面区域,其中0<a<2.问当a为何值时,V1+V2取最大值?试求此最大值。
求微分方程xy’+y-ex=0满足条件y|x=1=e的特解。
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________。
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设f(x)连续,且∫0xtf(2x一t)dt=arctanx3,f(1)=1,求∫12f(x)dx。
随机试题
对我国社会主义初级阶段的社会主要矛盾作出规范表述的是()
简述头脑风暴法实施的基本要点。
输血需加温的是
患者,女,59岁。舌左侧缘中部溃烂5个月,约2.3cm×1.5cm×0.5cm大小,活检报告为“鳞癌”,下6残根,边缘锐利。舌癌的好发部位是
甲公司为制造业企业,2×16年产生下列现金流量:(1)收到客户定购商品预付款3000万元;(2)税务部门返还上年度增值税款600万元;(3)支付购入作为以公允价值计量且其变动计入当期损益的金融资产核算的股票投资款1200万元:(4)为补充营运资金不足,自股
毛泽东提出在科学文化领域里实行的方针是()。
去年国庆某商场2天时间的销售额为2000万元。今年该商场预计,国庆期间销售额达到7000万元是不成问题的。以下哪一项最能支持上述推理?
已知二叉树T的结点形式为(llink,data,count,rlink),在树中查找值为X的结点,若找到,则记数(count)加l;否则,作为一个新结点插入树中,插入后仍为二叉排序树,写出其非递归算法。
ThePetofModernPeopleWriteanessayof160-200wordsbasedonthedrawing.Inyouressay,youshould1)describethe
Shehasa_____knowledgeofFrench,butshecan’tresistshowingoffinpublic.
最新回复
(
0
)