首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×m矩阵,则( ).
设A是m×n矩阵,B是n×m矩阵,则( ).
admin
2019-05-10
33
问题
设A是m×n矩阵,B是n×m矩阵,则( ).
选项
A、当m>n时,必有行列式∣AB∣≠0
B、当m>n时,必有行列式∣AB∣=0
C、当n>m时,必有行列式∣AB∣≠0
D、当n>m时,必有行列式∣AB∣=0
答案
B
解析
证秩(AB)<m或证ABX=0有非零解(利用命题2.1.2.7)证之.
解一 利用矩阵秩和乘积矩阵秩的两不大于的法则确定正确选项.因AB为m阶矩阵,行列式∣AB∣是否等于零取决于其秩是否小于m.利用矩阵秩的两不大于法则得到:(1)当m>n时,有秩(A)≤min{m,n)=n<m,秩(B)≤min{m,n}=n<m;(2)秩(AB)≤min(秩(A),秩(B)}<m,而AB为m阶矩阵,故∣AB∣=0.仅(B)入选.
解二 因BX=0的解必是ABX=0的解.而BX=0是n个方程m个未知数的齐次线性方程组.当m>n时,BX=0有非零解,从而ABX=0有非零解,故∣AB∣=0.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/vjV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上二阶可导,且f〞(χ)>0,取χi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1χ1+k2χ2+…+knχn)≤k1f(χ1)+k2f(χ2)+…+knf(χn).
设f(χ)二阶可导,=1且f〞(χ)>0.证明:当χ≠0时,f(χ)>χ.
证明:用二重积分证明
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
已知二次型f=2χ12+3χ22+3χ32+2aχ2χ3(a>0),通过正交变换化成标准形f=y12+2y22+5y32.求参数a及所用的正交变换矩阵.
设A=,若齐次方程组AX=0的任一非零解均可用α线性表示,则a=().
设A为,n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设α1,α2,…,αs为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αs线性无关.
设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=_________。
随机试题
传染病的基本特征是()
引起药源性疾病的药物A、布洛芬B、酮康唑C、环孢素D、氯化钾E、比沙可啶较易导致中毒性肝炎、肝衰竭的药品是
建筑地段地租的基础虽然是由真正的农业地租规定的,并受相同的级差地租规律的支配,但它与农业地租是有区别的,并且具有其自身的特征包括()。
房地产经纪机构客户关系管理系统的核心是()。
给水排水压力管道试验准备工作包括()。
旁站监理人员实施旁站监理时,发现施工企业有违反工程建设强制性标准行为的,有权责令施工企业立即()。。
如果被审计单位应付债券业务不多,注册会计师可根据成本效益原则决定直接进行()。
政府当然应该接受批评,但批评的基础应该是事实,而不是谣言。如城管,你可以批评授权过度,也可以批评一些地区没有将城管纳入体制编制带来的执法倾向的不当。但在网上整天发一些没有时间、没有地点、没有准确事实描述的图片故事.就不是一种正常的批评。这段文字意在说明(
注册:注销:账号
链式栈与顺序栈相比,一个比较明显的优点是
最新回复
(
0
)