首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
admin
2015-07-10
74
问题
设A为n阶矩阵,A
11
≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0, 于是A
*
b=A
*
AX=|A|X=0. 反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而(A
*
)<n,又A
11
≠0,所以r(A
*
)=1,且r(A)=n一1. 因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n—1个线性无关的解向量,而A
*
A=0,所以A的列向量组α
1
,α
2
,…,α
n
为方程组A
*
X=0的一组解向量. 由A
11
≠0,得α
2
,…,α
n
线性无关,所以α
2
,…,α
n
是方程组A
*
X=0的基础解系. 因为A
*
b=0,所以b可由α
2
,…,α
n
线性表示,也可由α
1
,α
2
,…,α
n
线性表示,故r(A)=[*]=n一1<n,即方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://kaotiyun.com/show/wjU4777K
0
考研数学三
相关试题推荐
2021年2月20日,党史学习教育动员大会在北京召开。习近平总书记在大会上强调,()是党的生命,也是我们党能成为百年大党、创造世纪伟业的关键所在。①践行党的初心使命②旗帜鲜明讲政治③保证党的团结和集中统一
网络用户利用网络服务实施侵权行为的,权利人有权通知网络服务提供者采取删除、屏蔽、断开链接等必要措施。根据相关法律的规定,此时网络服务提供者应当承担的义务有()。
马克思把社会比喻为一座大厦,并把社会关系区分为经济基础和上层建筑两部分。经济基础是
人类每天都在产生垃圾,垃圾总量一天比一天多,由此带来的问题非常棘手。不产生垃圾是不可能的。既然如此,那就退而求其次,倡导大家减少垃圾。然而,减到多少才是少?这里并没有一个标准。而且从总体上看,生产和消费必然产生垃圾,减少垃圾很可能抑制生产和消费。接着往后退
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α5=(2,-1,4,1),求:(1)向量组的秩;(2)求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示.
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
设水以常速(即单位时间注入的水的体积为常数)注入图2.7所示的罐中,直至将水罐注满.画出水位高度随时问变化的函数y=y(t)的图形(不要求精确图形,但应画出曲线的凹凸方向并表示出拐点).
设函数f(x)任(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
随机试题
有以下程序:#include<stdio.h>main(){intsum=10,n=1;while(n<3){sum=sum—n;n++;}printf("%d,%d",n,sum);}
谭某拥有一套建筑面积为140m2的住宅,位于一幢钢筋混凝土结构高层住宅楼的12层。该套住宅的套内房屋使用面积为95m2,套内墙体面积为20m2,套内未封闭阳台的水平投影面积为10m2,谭某所在楼层单元楼梯间的建筑面积为20m2。一个月前谭某委托乙房地产经纪
垂直风管与每层水平风管交接处的水平管段上设什么阀门为宜?(2004,94)
穿越铁路的燃气管道的套管,应符合的要求是()。
在我国,最早以马克思主义观点写成的教育著作是()。
Whattheseyoungmenandwomenneedtodonowistodevelopamentalityto________theiridealswithreality.
(2009年试题,一)设函数z=f(x,y)的全微分为出=xdx+ydy,则点(0,0)().
Inoursocietytherazorofnecessitycutsclose.Youmustmakeabucktosurvivetheday.Youmustworktomakeabuck.Thejob
Whenwewantto【C1】______otherpeoplewhatwethink,wecandoitnotonlywiththehelpofwords,butalsoinmany【C2】______way
A、Sheattendedoneoftheirmeetings.B、Herroommateisamember.C、Shereadabouttheminthenewspaper.D、Shesawthemprotest
最新回复
(
0
)