首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
admin
2018-04-08
74
问题
已知四阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
。若β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解。
选项
答案
由α
1
,α
3
,α
4
线性无关及α
1
=2α
2
-α
3
知,r(α
1
,α
2
,α
3
,α
4
)=3,即矩阵A的秩为3。因此Ax=0的基础解系中只包含一个向量。那么由(α
1
,α
2
,α
3
,α
4
)[*]=α
1
-2α
2
+α
3
=0知, Ax=0的基础解系是(1,-2,1,0)
T
。再由 β=α
1
+α
2
+α
3
+α
4
=(α
1
,α
2
,α
3
,α
4
)[*] 知,(1,1,1,1)
T
是Ax=β的一个特解,故Ax=β的通解是 [*] 其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/wlr4777K
0
考研数学一
相关试题推荐
已知向量组与向量组等秩,则x=___________.
求方程的通解.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
已知矩阵相似.(1)求x与y;(2)求一个满足P-1AP=B的可逆矩阵P.
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T;β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T.求β1,β2,β3到α1,α2,α3的过渡矩阵;
设随机变量X1,X2,X3,X4相互独立,且都服从正态分布N(0,σ2),如果二阶行列式Y=,则σ2=________。
已知3阶矩阵A与3维向量x.使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.(1)记P=(xAxA2x),求3阶矩阵B,使A=PBP—1;(2)计算行列式|A+E|.
设Y服从(0,3)上的均匀分布,X与Y相互独立,则行列式的概率为________.
随机试题
某企业经批准从2007年1月1日起发行2年期面值为100元的债券10000张。发行价格确定为面值发行。债券年利率为6%(实际利率与合同利率一致),每年7月1日和1月1日为付息日。该债券所筹集资金全部用于新生产线的建设,该生产线于2008年6月底完工交付使用
少数急性有机磷中毒患者发生中间综合征,其出现时间为
系统性红斑狼疮患者的皮肤护理,下列哪项不妥?()
对于持有和买卖上海证券交易所上市证券的投资者,未办理指定交易的投资者的证券暂由()托管,其红利、股息、债息、债券兑付款在办理指定交易后可领取。
请用不超过150字的篇幅,概括出给定资料所反映的主要问题。用不超过350字的篇幅,提出解决给定资料所反映问题的方案。要有条理地说明,要体现针对性和可操作性。
首要特质
论信息系统项目的需求管理和范围管理在信息系统项目的开发过程中,人们越来越体会到需求管理和范围管理的重要性,含糊的需求和范围经常性的变化使信息系统项目的甲乙双方吃尽了苦头,这使得人们急于寻找良策以管理范围。请围绕“需求管理和范围管理”论题,分
假定当前盘符下有两个如下文本文件:文件名a1.txta2.txt内容123#321#则下面程序段执行后的结果为#include"stdio.h"voidfc(FILE
Shewantstoapplyforanewjobasherpresentjobisnot(interest)______.
TheWonderfulWorldofSmallThere’saquietrevolutiongoingon,anditsnameisnanotechnology.Ahostofinnovationsare
最新回复
(
0
)