首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上可微,x∈[a,b],a<f(x)<b,且f′(x)≠1,x∈(a,b).试证:在(a,b)内方程f(x)=x有唯一实根.
设f(x)在[a,b]上可微,x∈[a,b],a<f(x)<b,且f′(x)≠1,x∈(a,b).试证:在(a,b)内方程f(x)=x有唯一实根.
admin
2019-12-26
33
问题
设f(x)在[a,b]上可微,
x∈[a,b],a<f(x)<b,且f′(x)≠1,x∈(a,b).试证:在(a,b)内方程f(x)=x有唯一实根.
选项
答案
存在性.令F(x)=f(x)-x,显然F(x)在[a,b]上连续,又F(a)=f(a)-a>0,F(b)=f(b)-b<0,则由零点定理可知,至少存在一点ξ∈(a,b),使F(ξ)=0,即f(ξ)=ξ. 用反证法证唯一性.设存在η∈(a,b),η≠ξ,使F(η)=0,则由罗尔定理可知,在η与ξ之间存在一点c,使F′(c)=f′(c)-1=0,即f′(c)=1,这与f′(x)≠1,x∈(a,b)矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/xLD4777K
0
考研数学三
相关试题推荐
已知n阶矩阵A满足(A一aE)(A一bE)=0,其中a≠b,证明A可对角化.
已知3阶矩阵A=有一个二重特征值,求a,并讨论A是否相似于对角矩阵.
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
证明r(A+B)≤r(A)+r(B).
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
设函数的导函数在x=0处连续,则参数λ的取值范围为_____________.
若行列式的第j列的每个元素都加1,则行列式的值增加Aij.
求极限=_______.
设求f’(x).
已知A,B及A,C都可交换,证明A,B,C是同阶矩阵,且A与BC可交换.
随机试题
时隙交换器主要由____________和控制存储器组成。
足月顺产,产后第1天,T37.8℃P65次分,出汗多,阴道流血不多,宫底平脐,收缩好产后7天,恶露血性,量多,宫底脐下两横指
患者,男性,65岁。确诊肺心病20余年,今晨因呼吸困难伴喘息加重急诊入院,输液过程中,突然出现胸闷、咳嗽、咳粉红色泡沫样痰,听诊两肺满布湿啰音,心率快且律不齐,该患者可能发生
商用房贷款操作风险的防控措施包括()。
关于固定间隔期系统的特点说法正确的是()。
沉积物基准是指特定化学物质在沉积物中不对底栖生物或上覆水体质量产生危害的实际允许浓度,它既是对水质基准的完善,也是评价沉积物污染和生态风险的基础,是进行湖泊生态环境质量评价的基本要素。国外对沉积物基准的研究始于20世纪80年代,但还未形成完善和统一的沉积物
余艺与齐华于1966年结婚,婚后育有二子一女:长子余海、次子余涛、女儿余萍。1990年后,三个子女陆续成家独立生活,余艺因掌握缝纫技术,退休后被一家服装厂聘为技术员,收入颇丰。2002年,齐华去世,余艺无心工作,遂以8万元变卖了自住的房屋,跟随长子余海生活
作家萧伯纳说“人生有两大悲剧,一是没得到你心爱的东西,另一是得到了你心爱的东西”;学者周国平则说“人生有两大快乐,一是没有得到你心爱的东西,于是你可以去寻求和创造,另一是得到了你心爱的东西,于是你可以去品味和体验”。从哲学角度看,两个观点存在差异的主要原因
请根据如图1-8所示的网络结构回答下列问题。
CeaseFireinUkraineA)SeparatistleadersinUkraineagreedMondaytojoinagovernmentdeclaredceasefireasafirststeptow
最新回复
(
0
)