首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt). ②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt). ②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
admin
2018-11-20
94
问题
①设α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
都是n维向量组,证明r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
)≤r(α
1
,α
2
,…,α
s
)+r(β
1
,β
2
,…,β
t
).
②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
③设A和B是两个列数相同的矩阵,
表示A在上,B在下构造的矩阵.证明
≤r(A)+r(B).
选项
答案
这是3个互相等价的命题:①是②的向量形式;③是②的转置形式.因此对其中之一的证明就完成了这3个命题的证明. 证明①.取{α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
}的一个最大无关组(I),记(I)
1
是(I)中属于α
1
,α
2
,…,α
s
中的那些向量所构成的部分组,(I)
2
是(I)中其余向量所构成的部分组.于是(I),和(I)
2
分别是属于α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
的无关部分组,因此它们包含向量个数分别不超过r(α
1
,α
2
,…,α
s
)和r(β
1
,β
2
,…,β
t
).从而 r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
)=(I)中向量个数 =(I)
1
中向量个数+(I)
2
中向量个数) ≤r(α
1
,α
2
,…,α
s
)+r(β
1
,β
2
,…,β
t
).
解析
转载请注明原文地址:https://kaotiyun.com/show/DuW4777K
0
考研数学三
相关试题推荐
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
设f(x)在[a,b]上连续,在(a,b)内可导,且f’+(a)f’一(b)<0.证明:存在ξ∈(a,b),使得f’(ξ)=0.
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定u为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求
已知函数在(一∞,+∞)内连续可导,则().
设向量组α1,α2,α3,β1线性相关,向量组α1,α2,α3,β2线性无关,则对于任意常数k,必有().
设随机变量X的密度函数为φ(x),且φ(—x)=φ(x),F(x)为X的分布函数,则对任意实数a,有()
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;④A—E恒可逆。上述命题中,正确的个数为()
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。如果A3β=Aβ,求秩r(A—E)及行列式|A+2E|。
若行列式的第j列的每个元素都加1,则行列式的值增加
随机试题
产褥病率
试述社会意识的相对独立性原理,并说明它对我国社会主义精神文明建设的指导意义。
出口退税的原则是:
一般资料:求助者,女性,66岁,某工厂退休职工。案例介绍:求助者一年前睡觉时突然憋醒,胸闷气短,觉得自己马上就不行了,送入急诊后诊断为呼吸暂停综合症,自己非常后怕,因为自己的哥哥就是夜里突发心脏病去世的,医生也说这种病如不及时发现就会憋死。求助者
阻碍互惠交换实现的主要障碍包括()
请根据下列素材设计一个大班科学活动,要求写出活动名称、活动目标、活动准备、活动过程。大班的胡老师为幼儿提供了各种吹泡泡的工具,有吸管、铁丝绕成的圈,塑料吹泡泡棒等,让幼儿在户外活动时自己吹泡泡玩。幼儿在吹泡泡的时候,有的能吹出很大的泡泡,有的只能
美国芝加哥地区曾发生服用泰诺药片致人死亡的严重事故,全美上下陷入恐慌,调查显示有94%的消费者知晓泰诺中毒事件。面对严重的危机,在首席执行官吉姆.博克的领导下,强生公司坦然应对,迅速采取一系列措施。首先,公司立即抽调大批人马对所有药片进行检验,结果显示,在
关于地中海气候的纬度分布,正确的是______。
选举权和被选举权属于我国公民基本权利中的
Somedoctorsaretakinganunusualnewapproachtocommunicatebetterwithpatients—theyareletting【B1】______readthenotestha
最新回复
(
0
)