首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt). ②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt). ②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
admin
2018-11-20
39
问题
①设α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
都是n维向量组,证明r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
)≤r(α
1
,α
2
,…,α
s
)+r(β
1
,β
2
,…,β
t
).
②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
③设A和B是两个列数相同的矩阵,
表示A在上,B在下构造的矩阵.证明
≤r(A)+r(B).
选项
答案
这是3个互相等价的命题:①是②的向量形式;③是②的转置形式.因此对其中之一的证明就完成了这3个命题的证明. 证明①.取{α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
}的一个最大无关组(I),记(I)
1
是(I)中属于α
1
,α
2
,…,α
s
中的那些向量所构成的部分组,(I)
2
是(I)中其余向量所构成的部分组.于是(I),和(I)
2
分别是属于α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
的无关部分组,因此它们包含向量个数分别不超过r(α
1
,α
2
,…,α
s
)和r(β
1
,β
2
,…,β
t
).从而 r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
)=(I)中向量个数 =(I)
1
中向量个数+(I)
2
中向量个数) ≤r(α
1
,α
2
,…,α
s
)+r(β
1
,β
2
,…,β
t
).
解析
转载请注明原文地址:https://kaotiyun.com/show/DuW4777K
0
考研数学三
相关试题推荐
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,f(x)dx=0.证明:存在η∈(a,b),使得f’(η)一3f’(17)+2f(η)=0.
设二元函数f(x,y)=|x一y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设A=E一ααT,其中α为n维非零列向量.证明:A2=A的充分必要条件是α为单位向量;
设X1,X2,…,X7为来自总体X~N(0,1)的简单随机样本,随机变量Y=(X1+X2+X3)2+(X4+X5+X6)2,则当C=________时,服从参数为________的t分布.
对任意两个随机事件A,B,已知P(A一B)=P(A),则下列等式不成立的是().
设随机变量(ξ,η)的密度函数为试求(Ⅰ)(ξ,η)的分布函数;(Ⅱ)概率
已知线性方程组问:(1)a,b为何值时,方程组有解?(2)有解时,求出方程组导出组的一个基础解系;(3)有解时,求出方程组导出组的全部解.
设随机变量X,Y相互独立,X在区间[0,5]上服从均匀分布,Y服从参数为1的指数分布,令Z=max{X,Y}.(1)求随机变量Z=max(X,Y)的概率密度;(2)计算P(X+Y>1).
设随机变量X与Y的相关系数为0.5,E(X)=E(Y)=0,E(X2)=E(Y2)=2,则E[(X+Y)2]=________。
随机试题
脱氧核苷酸是怎样生成的?
位于耳屏游离缘下部尖端,即耳屏2区后缘处的耳穴是()
格拉斯哥昏迷计分法的依据是()。
甲公司属于以境内外全部生产经营认定为高新技术企业的公司,在2020年年初汇算清缴2019年度企业所得税时,对有关收支项目进行纳税调整,自行将全年会计利润500万元调整为全年应纳税所得额600万元,已缴纳所得税税额为90万元。税务师事务所检查时,发现甲公司以
高水平学生在测验中能得高分,而低水平学生只能得低分.说明该测验下列哪种质量指标高?()
国际收支平衡表的四部分主要内容中,最基本的项目是()。
下面关于中断的顺序,排列正确的是()。
学科课程其内容往往与学生的生活实际相脱离;在教学中容易忽视学生学习兴趣及学生——。
忠诚于党、听党指挥是我军的光荣传统。1929年12月下旬,红四军党的第九次代表大会在福建上杭县古田村召开。这次会议史称古田会议。会议通过的毛泽东起草的决议案,确立了思想建党、政治建军原则,规定红军是一个执行革命的政治任务的武装集团,必须(
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
最新回复
(
0
)