首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x) 为曲边的曲边梯形面积记为S2,并设2S1一S2
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x) 为曲边的曲边梯形面积记为S2,并设2S1一S2
admin
2018-09-20
102
问题
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x) 为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求此曲线y=y(x)的方程.
选项
答案
曲线y=y(x)上点P(x,y)处的切线方程为 Y—y=y’(X-x). 它与x轴的交点为[*].由于y’(x)>0,y(0)=1,从而y(x)>0(x≥0),于是 [*] 又S
2
=∫
0
x
y(t)dt,由条件2S
1
一S
2
=1,知 [*] ①式两边对x求导并化简得yy"=(y’)
2
.令p=y’,则方程可化为 [*] 注意到y(0)=1,并由①式得y’(0)=1.由此可得C
1
=1,C
2
=0,故所求曲线的方程是y=e
x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/xNW4777K
0
考研数学三
相关试题推荐
设随机变量X~E(λ),令Y=求P(X+Y=0)及FY(y).
设随机变量X服从参数为1的指数分布,则随机变量Y一min(X,2)的分布函数().
设f’(x)在[0,1]上连续,且f(1)一f(0)=1.证明:f’2(x)dx≥1.
设f(x)在(0,+∞)内连续且单调减少.证明:∫1n+1f(x)dx≤f(k)≤f(1)+∫1nf(x)dx.
设f(x)在(一a,a)(a>0)内连续,且f’(0)=2.证明:求
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.逐个抽取,取后无放回;
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:不超过三次取到次品.
已知y1(x)和y2(x)是方程y’+p(x)y=0的两个不同的特解,则方程的通解为()
设f(x)在[a,b]上二阶可导,且f(x)>0,使不等式f(a)(b—a)<∫abf(x)dx<(b—a)成立的条件是()
证明不等式:
随机试题
木合梯如何维护保养?
焦耳-楞次定律
根据赫茨伯格的双因素理论。T作成就、提升、奖金、责任感等因素是()
()适用于经常的、大量的松散物料的运输。
人是教育的产物。
下列哪个选项不属于民族自治地方的自治机关?()
A、 B、 C、 D、 A
A、CurryBeefinacaseisnotasheavyasSlicedPork.B、TherearemoretinsinacaseforStewedPorkRibsthanStewedPork.C、
InSpaininsummertherearemanyvillageswithalotoftourists.Thetouristsgotothevillageswiththeirfamilies,whereth
A、Nomedicinecouldsolvethewoman’sproblem.B、Thewomanshouldeatlesstolosesomeweight.C、Nothingcouldhelpthewomani
最新回复
(
0
)