首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设图形(a),(b),(c)如下: 从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
设图形(a),(b),(c)如下: 从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
admin
2018-05-23
48
问题
设图形(a),(b),(c)如下:
从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫
0
x
f(t)dt与y=f’(x)的图形分别是
选项
A、(a),(b),(c)
B、(a),(c),(b)
C、(b),(a),(c)
D、(c),(a),(b)
答案
C
解析
以(a)或(b)或(c)为y=f(x)的图形,从∫
0
x
f(t)dt及f’(x)的几何意义来看其它两个图形是否分别是y=∫
0
x
f(t)dt和y=f’(x)的图形.
若(a)是y=f(x)的图形,则f(x)在[0,1]单调上升且f(x)>0 (x∈[0,1]),f’(x)≥0,∫
0
x
f(t)dt>0 (
∈(0,1]).但(c)中x轴下方有图像,故(a)不是y=f(x)的图形,于是(A),(B)均不正确.
若(b)是y=f(x)的图形,则f(x)有唯一最大值点x
0
∈(0,1),f(x)在[0,x
0
]单调上升,在[x
0
,1]单调下降,且f(x)>0(x∈(0,1)),故∫
0
x
f(t)dt>0且单调上升(x∈[0,1]),f’(x)≥0(x∈(0,x
0
)),f’(x
0
)=0,f’(x)≤0(x∈(x
0
,1)).因此(C)是正确的.
若(c)是y=f(x)的图形,则f(x)在[0,1]单调下降,于是f’(x)≤0.因此(D)不正确,故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/xOX4777K
0
考研数学三
相关试题推荐
设函数f(x)在(一∞,+∞)内连续,其导函数y=f’(x)的曲线如图所示,则f(x)有
已知.f(x)二阶可导,且f(x)>0,f(x)fˊˊ(x)-[fˊ(x)]2≥0(x∈R).(1)证明:f(x1)f(x2)≥f2(x1,x2∈R);(2)若f(0)=1,证明:f(x)≥efˊ(0)x(x∈R).
已知数列=_________.
设z=z(u,v)具有二阶连续偏导数,且z=z(x-2y,z+3y)满足求z=z(u,v)的一般表达式.
设a1=2,(n=1,2,…),证明:存在并求其极限值.
设二维随机变量(X,Y)的概率密度为求:(1)方差D(XY);(2)协方差Cov(3X+Y,X-2Y).
设随机变量X与Y相互独立,且X~N(0,σ∫12),Y~N(0,σ∫22),则概率P{X-Y|<1}()
设向量组α1=[a11,a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设且ABAT=E+2BAT,则B=___________.
随机试题
下列英文缩写()是指计算机主机中的中央处理器。
A.血培养B.粪便培养C.尿培养D.临床表现E.肥达反应流脑确诊根据
湿度小的黏性土挖土深度小于3m时,可用()支撑。
极限状态设计方法的原则是建筑结构必须满足( )的要求。
甲诉乙建设工程施工合同纠纷一案,人民法院立案审理,在庭审中,甲方未经法庭许可中途退庭,则人民法院对该起诉讼案件()。【2009年考试真题】
铝既能溶于酸又能溶于碱,它是人体维持正常运转所需的微量元素。据实验表明.红烧肉在铝锅里存放一夜,铝在肉中的含量每千克可高达120毫克至250毫克。铝元素很难再从体内排出,容易造成早衰和阿尔茨海默病。由此得出的结论是:
记忆与学习研究的传统方法有哪些?
我国目前许多城市正在进行有线电视的数字化改造。下面有关数字有线电视的叙述中,错误的是
下面关于HDMI的叙述中,错误的是()。
Followingthe(success)______settlementofthestrike,thetrainserviceisnowbacktonormal.
最新回复
(
0
)