首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是 ( )
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是 ( )
admin
2016-09-19
59
问题
已知向量组(Ⅰ)α
1
,α
2
,α
3
,α
4
线性无关,则与(Ⅰ)等价的向量组是 ( )
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
B、α
1
-α
2
,α
2
-α
3
,α
3
-α
4
,α
4
-α
1
C、α
1
+α
2
,α
2
-α
3
,α
3
+α
4
,α
4
-α
1
D、α
1
+α
2
,α
2
-α
3
,α
3
-α
4
,α
4
-α
1
答案
D
解析
因(A)α
1
+α
2
-(α
2
+α
3
)+(α
3
+α
4
)-(α
4
+α
1
)=0;
(B)(α
1
-α
2
)+(α
2
-α
3
)+(α
3
-α
4
)+(α
4
-α
1
)=0;
(C)(α
1
+α
2
)-(α
2
-α
3
)-(α
3
+α
4
)+(α
4
-α
1
)=0,
故均线性相关,而
[α
1
+α
2
,α
2
-α
3
,α
3
-α
4
,α
4
-α
1
]=[α
1
,α
2
,α
3
,α
4
]
=[α
1
,α
2
,α
3
,α
4
]C,
其中
故α
1
+α
2
,α
2
-α
3
,α
3
-α
4
,α
4
-α
1
线性无关,两向量组等价.
转载请注明原文地址:https://kaotiyun.com/show/RtT4777K
0
考研数学三
相关试题推荐
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
A,B是两个事件,则下列关系正确的是().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形是().
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
一个家庭中有两个小孩.(1)已知其中有一个是女孩,求另一个也是女孩的概率;(2)已知第一胎是女孩,求第二胎也是女孩的概率.
在求直线l与平面Ⅱ的交点时,可将l的参数方程x=xo+mt,y=yo+nt,z=zo+pt代入Ⅱ的方程Ax+By+Cz+D=0,求出相应的t值.试问什么条件下,t有唯一解、无穷多解或无解?并从几何上对所得结果加以说明.
设二维随机变量X和Y的联合概率密度为求X和Y的联合分布F(x,y).
已知f(x,y)=x2+4xy+y2,求正交变换P,使得
随机试题
______peoplehavecometorealizetheimportanceoflearningEnglishNowtheygotovarioussortsofschoolstotakeupEnglishc
评定绒毛膜癌预后的因素有哪些?
呃逆与干呕、嗳气在病机上的共同点是()
合同双方在订立合同时已形成的文件不包括( )。
【背景资料】某大型工程,由于技术难度大,对施工单位的施工设备和同类工程施工经验要求比较高,而且对工期的要求比较紧迫。业主在对有关单位和在建工程考察的基础上,邀请了3家国有一级施工企业投标,通过正规的开标评标后,择优选择了其中一家作为中标单位,并与
围绕工程项目的招标投标活动,下列说法正确的是()。
以下说法错误的一项是()。
下列有关年龄的说法不正确的是:
Icryeasily.IonceburstintotearswhenthecurtaincamedownontheKirovBallet’s"SwanLake".Istillchokeupeverytime
PeterfeltveryguiltyfornotbeingabletoreunitewithhisfamilyonChristmasEve,sobedecidedto______.Hewantedtowork
最新回复
(
0
)