首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二二次型f(x1,x2,x3)=xTAx=3x12+ax22+3x32一4x1x2—8x1x3—4x2x3,其中一2是二次型矩阵A的一个特征值。 (Ⅰ)试用正交变换将二次型f化为标准形,并写出所用正交变换; (Ⅱ)如果A*+kE是正定矩阵
设二二次型f(x1,x2,x3)=xTAx=3x12+ax22+3x32一4x1x2—8x1x3—4x2x3,其中一2是二次型矩阵A的一个特征值。 (Ⅰ)试用正交变换将二次型f化为标准形,并写出所用正交变换; (Ⅱ)如果A*+kE是正定矩阵
admin
2022-10-09
48
问题
设二二次型f(x
1
,x
2
,x
3
)=x
T
Ax=3x
1
2
+ax
2
2
+3x
3
2
一4x
1
x
2
—8x
1
x
3
—4x
2
x
3
,其中一2是二次型矩阵A的一个特征值。
(Ⅰ)试用正交变换将二次型f化为标准形,并写出所用正交变换;
(Ⅱ)如果A
*
+kE是正定矩阵,求k的取值。
选项
答案
[*] 得到矩阵A的特征值是λ
1
=λ
2
=7,λ
3
=一2。 对λ=7,解齐次方程组(7E一A)x=0得基础解系 α
1
=(1,一2,0)
T
,α
2
=(1,0,一1)
T
。 对λ=一2,解齐次方程组(一2E一A)x=0得基础解系α
3
=(2,1,2)
T
。 因为α
1
,α
2
不正交,故需施密特(Schmidt)正交化,有 [*] (Ⅱ)因为矩阵A的特征值为7,7,一2。所以|A|=一98,那么A
*
的特征值为一14,—14,49。从而A
*
+kE的特征值为k一14,k一14,k+49。因此,k>14时,A
*
+kE正定。
解析
转载请注明原文地址:https://kaotiyun.com/show/xRf4777K
0
考研数学二
相关试题推荐
=_______
曲线的斜渐近线方程为__________。
求分别满足下列关系式的f(χ).1)f(χ)=∫0χ(t)dt,其中f(χ)为连续函数;2)f′(χ)+χf′(-χ)=χ
设f(x,y)连续,且f(x,y)=x+yf(μ,ν)dμdν,其中D是由y=,x=1,y=2所围成的区域,则f(x,y)=________。
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,7),则该向量组的秩是_________.
以y=cos2x+sin2x为一个特解的二阶常系数齐次线性微分方程是_________.
证明奇次方程a0x2n+1+a1x2n+…+a2x+a2n+1=0一定有实根,其中常数a0≠0.
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3经正交变换x=Py化成产f=y22+2y32,其中x=(x1,x2,x3)T和y=(y1,y2,y3)T都是3维列向量,P是3阶正交矩阵.试求常数α,β.
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
(1997年试题,二)设则F(x)().
随机试题
分泌生长素的腺体是
奥美拉唑具有下列哪一作用
患儿,男,3岁。因易汗出1个月前来就诊。症见:汗出,以头部、肩背明显,活动后加重,神倦乏力,面色少华,肢端欠温,平时易感冒。舌质淡,舌边齿印,苔薄白,脉弱。治疗首选方剂是
城市规划管理中需要特别注意其一些基本特征,与这些特征不符合的是()。
某投资者以贴现形式购买了一张面值1000元,期限为3年的可提前赎回债券,市场上同期限、同面值并且其他条件与上述可提前赎回债券完全一致的普通债券的购买价格为950元,则上述可提前赎回债券的购买价格可能为()。
简述员工培训环境分析的内容。
路老师在进行生物课教学的过程中,经常是先给学生讲解知识,然后带学生到植物园里去观察,有时候让学生一起进行一些扦插的操作。这样学生既有课堂知识的学习,又有实际的感性认识。这体现了路老师遵循了教育过程的()。
如何理解集权与分权的关系?
软件工程的3要素包括方法、工具和过程,其中,______支持软件开发的各个环节的控制和管理。
【B1】【B15】
最新回复
(
0
)