首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(χ)过原点,在原点处的切线平行于直线y=2χ+1,又y=y(χ)满足微分方程y〞-6y′+9y=e3χ,则y(χ)=_______.
设y=y(χ)过原点,在原点处的切线平行于直线y=2χ+1,又y=y(χ)满足微分方程y〞-6y′+9y=e3χ,则y(χ)=_______.
admin
2020-03-10
88
问题
设y=y(χ)过原点,在原点处的切线平行于直线y=2χ+1,又y=y(χ)满足微分方程y〞-6y′+9y=e
3χ
,则y(χ)=_______.
选项
答案
y(χ)=2χe
3χ
+[*]χ
2
e
3χ
解析
由题意得y(0)=0,y′(0)=2,
y〞-6y′+9y=e
3χ
的特征方程为λ
2
-6λ+9=0,特征值为λ
1
=λ
2
=3,
令y〞=6y′+9y=e
3χ
的特解为y
0
(χ)=aχ
2
e
3χ
代入得以a=
,
故通解为y=(C
1
+C
2
χ)e
3χ
+
χ
2
e
3χ
.
由y(0)=0,y′(0)=2得C
1
=0,C
2
=2,则y(χ)=2χe
3χ
+
χ
2
e
3χ
.
转载请注明原文地址:https://kaotiyun.com/show/PYA4777K
0
考研数学二
相关试题推荐
(Ⅰ)设f(x)在[x0,x0+δ)((x0-δ,x0])连续,在(x0,x0+δ)((x0-δ,x0))可导,又,求证:f’+(x0)=A(f’-(x0)=A).(Ⅱ)设f(x)在(x0-δ,x0+δ)连续,在(x0-δ,x0+δ)/{x0}可导,又f
设n元线性方程组Ax=b,其中(1)当a为何值时,该方程组有惟一解,并求x1;(2)当a为何值时,该方程组有无穷多解,并求通解.
计算
设f(x)连续,∫0xtf(x-t)dt=1-cosx,求
求不定积分
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn证明方程组AX=b有无穷多个解;
在上半平面上求一条上凹曲线,其上任一点P(χ,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与z轴的交点),且曲线在点(1,1)处的切线与χ轴平行.
设n阶矩阵A正定,X=(x1,x2,…,xn)T,证明:二次型f(x1,x2,…,xn)=为正定二次型.
已知线性方程组问a,b为何值时,方程组有解,并求出方程组的通解。
(08)设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
随机试题
关于高档定价策略,下列说法正确的是________。
A、固化时收缩B、固化期15分钟C、固化期轻膨胀D、与牙齿有化学结合E、固化时体积无变化光固化复合树脂
男,38岁,间歇性浮肿10余年,伴恶心、呕吐1周。查血红蛋白80g/L,血压20.7/14.7kPa(155/110mmHg),尿蛋白(++),颗粒管型2~3个/HP,尿比重1.010~1.012。可能的诊断是
平安印刷厂系某省A市和平区乡办企业,1995年与同省B市人文出版社(位于该市河东区)签定一份合同,由平安印刷厂给人文出版社印刷小学教材,人文出版社支付印刷费。从1995年起,平安印刷厂即根据该合同一直在其工厂内为人文出版社印刷小学教材。到1999年,人文
一般来说,坍落度小于()的新拌混凝土,采用维勃稠度仪测定其工作性。
单层厂房的支撑系统包括柱间支撑和屋盖支撑两大部分。但其作用并不包括下列选项中的()。
建筑工程中,两个力大小相等,方向相反,作用线相重合,这是二力的( )。
下列关于海关征收滞报金的表述,正确的是()。
要在导游讲解中正确和熟练地运用类比法,地陪需要熟悉和掌握()知识。
作为职业活动内在的道德准则,“忠诚”的本质要求是()。
最新回复
(
0
)