首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(χ)过原点,在原点处的切线平行于直线y=2χ+1,又y=y(χ)满足微分方程y〞-6y′+9y=e3χ,则y(χ)=_______.
设y=y(χ)过原点,在原点处的切线平行于直线y=2χ+1,又y=y(χ)满足微分方程y〞-6y′+9y=e3χ,则y(χ)=_______.
admin
2020-03-10
55
问题
设y=y(χ)过原点,在原点处的切线平行于直线y=2χ+1,又y=y(χ)满足微分方程y〞-6y′+9y=e
3χ
,则y(χ)=_______.
选项
答案
y(χ)=2χe
3χ
+[*]χ
2
e
3χ
解析
由题意得y(0)=0,y′(0)=2,
y〞-6y′+9y=e
3χ
的特征方程为λ
2
-6λ+9=0,特征值为λ
1
=λ
2
=3,
令y〞=6y′+9y=e
3χ
的特解为y
0
(χ)=aχ
2
e
3χ
代入得以a=
,
故通解为y=(C
1
+C
2
χ)e
3χ
+
χ
2
e
3χ
.
由y(0)=0,y′(0)=2得C
1
=0,C
2
=2,则y(χ)=2χe
3χ
+
χ
2
e
3χ
.
转载请注明原文地址:https://kaotiyun.com/show/PYA4777K
0
考研数学二
相关试题推荐
求星形线L:(a>0)所围区域的面积A.
设f(t)在[0,π]上连续,在(0,π)内可导,且f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
求不定积分
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn证明方程组AX=b有无穷多个解;
设A是3阶矩阵,交换A的1,2列得B,再把B的第2列加到第3列上,得C.求Q,使得C=AQ.
(2013年)设D是由曲线y=,直线χ=a(a>0)及χ轴所围成的平面图形,Vχ,Vy,分别是D绕χ轴,y轴旋转一周所得旋转体的体积.若Vy=10Uχ求a的值.
(1995年)如图2.2所示,设曲线L的方程为y=f(χ),且y〞>0,又MT,MP分别为该曲线在点M(χ0,y0)处的切线和法线.已知线段MP的长度为(其中y′0=y′(χ0),y〞0=y〞0(χ0)),试推导出点P(ξ,η)的坐标表达式.
求齐次线性方程组的通解,并将其基础解系单位正交化。
随机试题
下列哪种激素的分泌不受腺垂体的控制
深度为15m的人工挖孔桩工程,()。
不符合终止经营定义的持有待售的非流动资产或处置组,其减值损失和转回金额及处置损益应当作为持续经营损益列报。()
住宅专项维修资金是指专项用于住宅()保修期满后的维修和更新、改造的资金。
【2012年烟台市市直】群体发展的最高阶段是()。
标志着我国剥削制度被消灭的历史事件是
中共十八届四中全会通过的《中共中央关于全面推进依法治国若干重大问题的决定》提出,坚持依法治国首先要坚持依宪治国,坚持依法执政首先要坚持依宪执政。中国特色社会主义政治最本质的特征、社会主义法治的最根本保证是()
=________.
微机的主机指的是_______。
SoapOperasAsoapoperaisaserialontelevisionorradio/whereeachepisodelinkstothenextepisode./Soyou’rea
最新回复
(
0
)