首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(χ)过原点,在原点处的切线平行于直线y=2χ+1,又y=y(χ)满足微分方程y〞-6y′+9y=e3χ,则y(χ)=_______.
设y=y(χ)过原点,在原点处的切线平行于直线y=2χ+1,又y=y(χ)满足微分方程y〞-6y′+9y=e3χ,则y(χ)=_______.
admin
2020-03-10
67
问题
设y=y(χ)过原点,在原点处的切线平行于直线y=2χ+1,又y=y(χ)满足微分方程y〞-6y′+9y=e
3χ
,则y(χ)=_______.
选项
答案
y(χ)=2χe
3χ
+[*]χ
2
e
3χ
解析
由题意得y(0)=0,y′(0)=2,
y〞-6y′+9y=e
3χ
的特征方程为λ
2
-6λ+9=0,特征值为λ
1
=λ
2
=3,
令y〞=6y′+9y=e
3χ
的特解为y
0
(χ)=aχ
2
e
3χ
代入得以a=
,
故通解为y=(C
1
+C
2
χ)e
3χ
+
χ
2
e
3χ
.
由y(0)=0,y′(0)=2得C
1
=0,C
2
=2,则y(χ)=2χe
3χ
+
χ
2
e
3χ
.
转载请注明原文地址:https://kaotiyun.com/show/PYA4777K
0
考研数学二
相关试题推荐
(Ⅰ)设f(x)在[x0,x0+δ)((x0-δ,x0])连续,在(x0,x0+δ)((x0-δ,x0))可导,又,求证:f’+(x0)=A(f’-(x0)=A).(Ⅱ)设f(x)在(x0-δ,x0+δ)连续,在(x0-δ,x0+δ)/{x0}可导,又f
求星形线L:(a>0)所围区域的面积A.
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
[*]
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为A=(Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T.(1)求(Ⅰ)的一个基础解系;(2)口为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求
设α为n维非零列向量,证明:A可逆并求A-1;
设n阶矩阵A正定,X=(x1,x2,…,xn)T,证明:二次型f(x1,x2,…,xn)=为正定二次型.
(17)设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2,(Ⅰ)证明r(A)=2;(Ⅱ)若β=α1+α2+α3,求方程组Ax=β的通解.
求微分方程y’+的通解.
随机试题
最先详细记载脱囊的是
泽泻具有的功效是
从资金的性质看,契约型基金的资金是通过发行基金受益凭证筹集起来的()。
林某拥有面积为140平方米的住宅一套,价值96万元。黄某拥有面积为120平方米的住宅一套,价值72万元。两人进行房屋交换,差价部分黄某以现金补偿林某。已知契税适用税率为3%,根据契税法律制度的规定,黄某应缴纳的契税税额为()万元。
红叶归处是秋风自古至今,红叶有着无尽的话题。每每读到有关红叶的文字,我便心动,不由自主地沉浸于哲理的思考。有一年在京郊红螺寺,我真真切切地读到了一片元宝枫叶内心的独白。那正是十月末的一天,天空一片高蓝,远山近岭到处是燃烧的红叶在秋风中静默,使人不
西周时将偶然犯罪称为()。
郑某等人多次预谋通过爆炸抢劫银行运钞车。为方便跟踪运钞车,郑某等人于2012年4月6日杀害一车主,将其面包车开走(事实一)。后郑某等人制作了爆炸装置,并多次开面包车跟踪某银行运钞车,了解运钞车到某储蓄所收款的情况。郑某等人摸清运钞车情况后,于同年6月8日将
Youwillhearanotherfiveshortpieces.Foreachpiecedecidewhoistalking.Writeoneletter(A-H)nexttothenumberofthepi
Atatimewhenitwasunusualtodoit,DorothySterlingwroteaboutsuchmajorfiguresofBlacks,historyasHarrietTubmanand
JonesBeachConnecticutisbeautifulinearlyJune.Therollinghillsaregreenandbeckoning,theleavesonthetreesfull
最新回复
(
0
)