首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且 α1+α2-α3=(2,0,-5,4)T,α2+2α3=(3,12,3,3)T,α3-2α1=(2,4,1,-2)T,则方程组Ax=b的通解x=( )
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且 α1+α2-α3=(2,0,-5,4)T,α2+2α3=(3,12,3,3)T,α3-2α1=(2,4,1,-2)T,则方程组Ax=b的通解x=( )
admin
2018-01-26
60
问题
设矩阵A是秩为2的四阶矩阵,又α
1
,α
2
,α
3
是线性方程组Ax=b的解,且
α
1
+α
2
-α
3
=(2,0,-5,4)
T
,α
2
+2α
3
=(3,12,3,3)
T
,α
3
-2α
1
=(2,4,1,-2)
T
,则方程组Ax=b的通解x=( )
选项
A、
B、
C、
D、
答案
A
解析
由于nR(A)=4-2=2,由非齐次线性方程组解的结构可知,方程组Ax=b的通解形式应为α+k
1
η
1
+k
2
η
2
,故可排除(C)、(D)。
由已知条件,
(α
2
+2α
3
)=b,A(α
3
-2α
1
)=-b,所以(A)中(1,4,1,1)
T
和(B)中(-2,-4,-,2)
T
都是方程组Ax=b的解。
(A)和(B)中均有(2,2,-2,1)
T
,因此可知它必是Ax=0的解。
又由于3(α
1
+α
2
-α
3
)-(α
2
+2α
3
)=3(α
1
-α
3
)+2(α
2
-α
3
),且由非齐次线性方程组的解与对应齐次线性方程组的解之间的关系知,3(α
1
-α
3
)+2(α
2
-α
3
)是Ax=0的解,所以(3,-12,-18,9)
T
是Ax=0的解,那么(1,-4,-6,3)
T
也是Ax=0的解。故应选(A)。
转载请注明原文地址:https://kaotiyun.com/show/xSr4777K
0
考研数学一
相关试题推荐
[*]
设二维随机变量(X,Y)的概率密度为求:(1)方差D(XY);(2)协方差Cov(3X+Y,X一2Y).
设X是任一非负(离散型或连续型)随机变量,已知的数学期望存在,而ε>0是任意实数,证明:不等式
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X千克是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
方程组的通解是__________.
n维向量组a1,a2…,as(3≤s≤n)线性无关的充要条件是()
(1)证明:等式(2)求级数的和.
设(1)求y(0),y’(0),并证明:(1一x2)y’’一xy’=4;(2)求的和函数及级数的值.
随机试题
葡萄胎随访时必须进行的检查是
上颌磨牙进行全冠修复时,为避免食物嵌塞应有哪种观念A.生物力学B.生物材料学C.动态D.静态E.形态学
患儿,10个月,因发热,咳嗽,惊厥来院就诊,体检:体温39.8℃,咽充血,前囟平。该患儿惊厥的原因可能是
本题涉及土地增值税法及企业所得税法。府城房地产开发公司为内资企业,公司于2015年1月—2018年2月开发“东丽家园”住宅项目,发生相关业务如下:(1)2015年1月通过竞拍获得一宗国有土地使用权,合同记载总价款17000万元,并规定2015年3月1日动
读图文材料。葡萄酒用新鲜葡萄或葡萄汁酿造而成。近年来。我国葡萄酒产量及消费量快速增长。据图文材料分析。影响葡萄酒产业布局最主要的一组区位因素是()。
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.求f’(x);
Imeanttogiveyouthisbooktoday,butIforgot.
A、Peoplecansurviveifluckyenough.B、Thechanceisverysmall.C、Theycanbeprevented.D、Thepossibilitycanbeignored.B由句
Directions:Inthispart,youwillhave15minutestogooverthepassagequicklyandanswerthequestionsonAnswerSheet1.Fo
Itisessentialtobuildupyourconfidence____________(如果你想在一生中有所成就的话).
最新回复
(
0
)