首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且 α1+α2-α3=(2,0,-5,4)T,α2+2α3=(3,12,3,3)T,α3-2α1=(2,4,1,-2)T,则方程组Ax=b的通解x=( )
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且 α1+α2-α3=(2,0,-5,4)T,α2+2α3=(3,12,3,3)T,α3-2α1=(2,4,1,-2)T,则方程组Ax=b的通解x=( )
admin
2018-01-26
55
问题
设矩阵A是秩为2的四阶矩阵,又α
1
,α
2
,α
3
是线性方程组Ax=b的解,且
α
1
+α
2
-α
3
=(2,0,-5,4)
T
,α
2
+2α
3
=(3,12,3,3)
T
,α
3
-2α
1
=(2,4,1,-2)
T
,则方程组Ax=b的通解x=( )
选项
A、
B、
C、
D、
答案
A
解析
由于nR(A)=4-2=2,由非齐次线性方程组解的结构可知,方程组Ax=b的通解形式应为α+k
1
η
1
+k
2
η
2
,故可排除(C)、(D)。
由已知条件,
(α
2
+2α
3
)=b,A(α
3
-2α
1
)=-b,所以(A)中(1,4,1,1)
T
和(B)中(-2,-4,-,2)
T
都是方程组Ax=b的解。
(A)和(B)中均有(2,2,-2,1)
T
,因此可知它必是Ax=0的解。
又由于3(α
1
+α
2
-α
3
)-(α
2
+2α
3
)=3(α
1
-α
3
)+2(α
2
-α
3
),且由非齐次线性方程组的解与对应齐次线性方程组的解之间的关系知,3(α
1
-α
3
)+2(α
2
-α
3
)是Ax=0的解,所以(3,-12,-18,9)
T
是Ax=0的解,那么(1,-4,-6,3)
T
也是Ax=0的解。故应选(A)。
转载请注明原文地址:https://kaotiyun.com/show/xSr4777K
0
考研数学一
相关试题推荐
已知,求a,b的值.
[*]
一个罐子里装有黑球和白球,黑、白球数之比为a:1.现有放回的一个接一个地抽球,直至抽到黑球为止,记X为所抽到的白球个数.这样做了n次以后,获得一组样本:X1,X2,…,Xn.基于此,求未知参数a的矩估计和最大似然估计.
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X千克是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
求微分方程y’cosy=(1+cosxsiny)siny的通解.
求微分方程的通解.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.计算ABT与ATB;
设n阶矩阵A的元素全是1,则A的n个特征值是__________.
设A为m×N实矩阵,e为N阶单位矩阵.已知矩阵b=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
随机试题
气管偏向患侧的疾病为
颁发《执业药师资格证书》的是监督、检查全国执业药师注册工作的是
某建设工程项目施工过程中发生不可抗力事件,建筑物受损严重,部分施工机具损毁,施工人员受伤,工期拖延一个月,关于损失承担的说法,正确的是()。
个人(家庭)财务报表主要包括()。
以发起方式设立的股份有限公司的章程须经()发起人同意。
某建筑工程公司正在研究购买甲、乙两种吊装设备何者有利的问题。甲设备价格为700万元,寿命期为4年;乙设备价格为1400万元,寿命期为8年。两种设备的动力费、人工费、故障率、修理费、速度和效率等都是相同的,假设资本的利率为10%。已知:(A/P,10%,4)
根据以下资料,回答以下小题。2010年,我国的专利申请总量为122.2万件,同比增长25.1%。在2010年的三类专利申请中,发明专利申请39.1万件,较上年增长24.4%,占专利申请总量的32.0%;实用新型专利申请41.0万件,较上年增长31
国务院和地方各级人民政府()城市学校教师和高等学校毕业生到农村地区、民族地区从事义务教育工作。
A、It’sbad.B、It’sgood.C、It’sbroken.C
Theoldideathattalentedchildren"burnthemselvesout"intheearlyyears,and,therefore,aresubjectedtofailureandatwo
最新回复
(
0
)